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Preface 

Mathematics exists mainly to give us power and control over the phys­
ical world, but it has always been so fascinating that it was studied for 
its own sake. Number theory is that sort of mathematics: it is of no use 
in building bridges, and civilization would carry on much as usual if 
all of its theorems were to disappear, nevertheless it has been studied 
and valued since the time of Pythagoras. That greatest of mathe­
maticians Carl Friedrich Gauss called it "The Queen of Mathematics," 
and "Everybody's Mathematics" is what the contemporary mathe­
matician Ivan Niven calls it. The reason for its appeal is that the subject 
matter-numbers-is part of everyone' s  experience, and the things 
that can be found out about them are interesting, curious, or surprising, 
and the ways they are found can be delightful: clean lines of logic, with 
sustained tension and satisfying resolutions.  

A course in number theory can do several things for a student. It  can 
acquaint him or her with ideas no student of mathematics should be 
ignorant of. More important, it is an example of the mathematical style 
of thinking-problem, deduction , solution-in a system where the 
problems are not unnatural or artificial. Most important, it can help to 
diminish the feeling that many students have, consciously or not, that 
mathematics is a collection of formulas and that to solve a problem you 
need only find the appropriate formula. 

VII 



viii Preface 

This text has been designed for a one-semester or one-quarter course 
in number theory, with minimal prerequisites. The reader is not re­
quired to know any mathematics except elementary algebra and the 
properties of the real numbers. Nevertheless, the average student does 
not find number theory easy because it involves understanding new 
ideas and the proofs of theorems. I have 

-
tried to make the proofs 

detailed enough to be clear, and I have included numerical examples, 
not only to illustrate the ideas, but to show the fascination of playing 
with numbers, which is how many of the ideas originated. 

I have included an introduction to most of the topics of elementary 
number theory. In Sections 1 through 5 the fundamental properties of 
the integers and congruences are developed, and in Section 6 proofs 
of Fermat's  and Wilson's theorems are given. The number theoretic 
functions d, cr, and 1> are introduced in Sections 7 to 9. Sections 10 to 
12 culminate in the quadratic reciprocity theorem . There follow three 
more or less independent blocks of material: the representation of 
numbers (Sections 13 to 15), diophantine equations (16 to 20) , and 
primes (21 and 22) . Because I think that problems are especially im­
portant and interesting in number theory, Section 23 consists of 260 

additional problems, some classified by section and some arranged 
without regard to topic. 

' 

There are three appendixes. Appendix A, Proof by Induction, should 
be read when and if necessary. Because computers integrate naturally 
with number theory, Appendix B presents problems for which it com­
puter can be programmed. Appendix C contains a table that makes it 
easy to factor any positive integer less than 10,000. 

Because I believe that the best way to learn mathematics is  to try to 
solve problems, the text includes almost a thousand exercises and 
problems. I attribute the success of the first edition not to the 
exposition-after all, the proofs were already known-but to the prob­
lems, and the problem lists have been revised ,  deleting unsuccessful 
problems and including new ones that may be mOre successful . The 
exercises interrupt the text and can be used in several ways: the stu­
dent may do them as he reads the material for the first time; he may 
return to them later to check on his understanding of material already 
studied; or the instructor may include them in his exposition. Some of 
the exercises and problems are computational and some classical , but 
many are more or less original, and a few,  I think, are startling. 
Number theory pr?blems can be difficult because inspiration is some­
times necessary to find a solution, and inspiration cannot be had to 
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order. A student should not expect to be able to conquer all of the 
problems and should not feel discouraged if some are baffling. There is 
benefit in trying to solve prOblems whether a solution is found or not. 
I. A.  Barnett has written [1] "To discover mathematical talent, there is 
no better course in elementary mathematics than number theory . Any 

student who can work the exercises in a modern text in number theory 
should be encouraged to pursue a mathematical career." 

Answers are provided where appropriate for exercises and odd­
numbered problems-those marked with an asterisk. Comments are 
given for those problems marked with a dagger . Although there are 
more problems than a student could solve in one semester, they should 

be treated as part of the text, to be read even if not solved. Some­
times they may be more interesting than the material on which they 
are based. 

The first edition contained many errors, and I want to thank the 
many people who pointed them out and suggested improvements. 
These errors have all been removed, but inevitably new ones have been 
added. I hope that when the reader finds one , he will feel pleased with 
his acuteness rather than annoyed with the author. Corrections will be 
welcomed. 

Underwood Dudley 
May 1978 
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Section 

1 
Integers 

The subject matter of number theory is numbers, and a large part of 

number theory is devoted to studying the properties of the integers­

that is, the numbers ... , -2, - 1 , 0, 1 , 2, . . . .  Usually the integers 

are used merely to convey information (3 apples, $32, 1 7x2 + 9) , with 

no consideration of their properties . When counting apples, dollars, or 

X2'S, it is immaterial how many divisors 3 has, whether 32 is prime or 

not, or that 17  can be written as the sum of the squares of two integers . 

But the integers are so basic a part of mathematics that they have been 

thought worthy of study for their own sake. The same situation arises 

elsewhere: the number theorist is coinparable to the linguist, who 

studies words and their properties, independent of their meaning. 

There are many replies to the question , "Why study numbers?" 

Here are some that have been given: 

Because teacher says you must. 

Because you won't graduate if you don't. 

. Because you have to take something. 
Because it gives your mind valuable training in thinking logically. 

Because numbers might be interesting. 

Because.numbers are a fundamental part of man's mental universe 

and hence worth looking into. 

1 



2 Section 1 

Because some of the most powerful human minds that ever existed 
were concerned with numbers, and what powerful minds study is 
worth studying. 

Because you want to know all about numbers: what makes them 
work, and what they do. 

Because mathematics contains some beautiful things, and someone 
told you that number theory contained some of the most beautiful­
and few of the most ugly-things. 

Because it is fun. 

Let us begin. 
In this section, and until further notice, lower case italic letters will 

invariably denote integers . We will take as known and use freely the 
usual properties of addition, subtraction, multiplication, division; and 
order for the integers . We also use in this section an important property 
of the integers-a property that you may not be consciously aware of 
because it is not stated explicitly as the others . It is the least-integer 
principle: a nonempty set of integers that is bounded below contains a 
smallest element. There is the corresponding greatest-integer principle: 
a nonempty set of integers that is bounded above contains a largest 
element. 

We will say that a divides b (written a I b) if and only if there is an 
integer d such that ad = b .  For example, 216, 12160, 17117, - 5150, and 
81- 24. If a does not divide b ,  we will write a % b. For example, 4%2 and 
3%4. 

" Exercise 1. t Which integers divide zero? 

Exercise 2. Show that if a I b and b 1 c ,  then a 1 c . 

As a sample of the sort of properties that division has, we prove 

Lemma !. Ifd l a and d l b, then d l (a +b) .  

Proof. From the definition, we know that there are integers q and· r 

such that 

dq = a  and dr = b .  

t Answers to selected exercises, those preceded by an asterisK (*), are provided on 
pp. 226ff. 



Thus 

a + b = d(q + r) , 

so from the definition again, d I (a + b). 

In the same way, we can prove 

Integers J 

Lemma 2 .  Ifd l al, dla!, .. . ,dla", then dl(cla l + c2a2 + . . . +c"a,,) 
for any integers Cl, C2 , • • •  , CII' 

Proof. From the definition, there are integers qI> q2,' .. ,qll such that 
al = dql, a2 = dq2' . . . , a" = dq". Thus 

clal + cza: + . . .  + cna" = d(Clql + C2Q! + . . .  + C.,.Q,,) , 

and from the definition again ,  dlcla] + CZa2 + . . .  + c"a". 

Exercise 3. Prove that if d I a then d I ca for any integer c .  

As an application of Lemma 2 ,  let us see if it is possible to have 1 00  
coins, made up of C pennies, d dimes, and q quarters, be worth exactly 
$5.00. If it is possible , then 

c+d+q=l00 

and 

C + 1 0d + 25q = 500. 

Subtract the first equation from the second and we get 9d + 24q = 400. 

Since 3 19 and 3 124, Lemma 2 says that 3 19d + 24q. That is, 3 1400. But 
that is impossible , so having exactly $5.00 is impossible with 1 00 pen­
nies, dimes, and quarters. There are, however, five different ways of 
getting $4. 99, and later we will develop a method for finding them. 

Fractions are not as natural as integers, and there seems to be a 
human tendency to avoid them. For example, we divide a gallon into 
quarts, a quart into pints, and a pint into ounces so that we can always 
measure with integer mUltiples of some unit. Finding a unit common to 
different measures was a problem which would arise naturally in 
commerce-if 1 5  Athenian drachmas are worth 1 8  drachmas from 
Miletus, how many Athenian drachmas are equivalent to 60 Miletian 
drachmas? That is one reason why the Euclidean Algorithm for finding 
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greatest common divisors was part of Euclid's Elements, written 
around 3 00 Be. The rest of this section will be devoted to the greatest 
common divisor and its properties, which we will use constantly later. 
We say that d is the greatest common divisor of a and b (written d = (a, 
b» if and only if 

(i) dla and dlb, and 
(ii) ifcla and c l b , thel1 c :5 d. 

Condition (i) says that d is a common divisor of a and b, and (ii) says 
that it is the greatest such divisor. For example, (2, 6) = 2 and (3, 
4) = 1. Note that if a and b are not both zero , then the set of common 
divisors of a and b is a set of integers that is bounded above by the 
largest of a, b, -a, and -b. Hence, from the greatest-integer principle 
for the integers, the set has a largest element, so the greatest common 
divisor of a and b exists and is unique. Note that ( 0, 0) is not defined, 
and that if (a, b) is defined, then it is positive. In fact, (a, b) �. 1 
because lla and lib for all a and b. 

'" Exercise 4. What are (4, 14) , (5, 15) , and (6, 16)? 

" Exercise 5. What is (n , 1) , where n is any positive integer? What is (n, 
O)? 

" Exercise 6. If d is a positive integer, what is (d, nd)? 

As an exercise in applying the definition of greatest common divisor, 
we will prove the following theorem, which we will use often later: 

Theorem 1 .  If (a, b) = d, then (aid, bid) = 1. 

Proof. Suppose thate = (aid, bid). We want to show thate = 1. We will 
do ihis by showing that e :5 1 and e � 1. The latter inequality follows 
from the fact that e is the greatest common divisor of two integers, and 
as we have noted, every greatest common divisor is greater than or 
equal to 1. To show that c :5 1, we use the facts that c I (aid) and c I (bid). 
We then know that there are integers q and r such that eq = aid and 
cr = bid. That is, 

(ed)q·= a and (ed)r = b. 
These equations show that cd is a common divisor of a and b. It is thus 
no greater than the greatest common divisor of a and b, and this is d. 
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Thus cd :S d .  Since d is positive, this gives c :S 1. Hence c = 1 ,  as was 
to be proved. 

If (a, b) = 1 ,  then we will say that a and b are relatively prime, for a 

reason that will become clear in the section on unique factorization. 

When a and b are small , it is often possible to see what (a, b) is by 

inspection. When a and b are large, this is no longer possible. The 

Euclidean Algorithm makes it easy, but first we need. 

Theorem 2 .  The Division Algorithm. Given positive integers a and b, 
b f= 0, .  there exist unique integers q and r, with 0 :S r < b such that 

a = bq + r . 

Proof. Consider the set of integers {a, a - b, a - 2b, a - 3b, . . . } . It 
contains a subset of nonnegative integers which is nonempty (because a 
is positive) and bounded below (by 0); from the least-integer principle, 
it contains a smallest element. Let it be a - qb. This number is not 
negative and it is less than b, because if it were greater than b it would 
not be the smallest nonnegative element in the set: a - (q + 1)b would 
be. 

I I 
a - (q + J)b 0 a - qb a-lb a-b a 

Let r = a - bq: this construction gives us q and r, and it remains to 
show that they are unique. Suppose that we have found q. rand ql, r] 
such that 

a = bq + r = bq] + rl 

with 0 :S r < b and 0 :S r1 < b. Subtracting, we have 

(1) 

Since b divides the left-hand side of this equation and the first term on 
the right-hand side, it divides the other term: 

b I (r - rl) .  

But since O :s  r < b and 0 :S r1 < b, we have 

-b <r - rl <b . 

The only mUltiple of b between -b and b is zero. Hence r - rl = 0, and 
it follows from (1) that q - q 1 = 0 too. Hence the numbers q and r in the 
thewem are unique. 
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Although the theorem was stated only for positive integers a and b ,  
because it is most often applied for positive integers, nowhere in the 
proof did we need a to be positive . Moreover, if b is negative, the 
theorem is true if 0 :S r < b is replaced with 0 :S r < -b ; you are in­
vited to reread the proof and verify that this is so. 

" Exercise 7. What are q andr if a = 75 and b = 24? Ifa = 75 and b = 25? 

Theorem 2, combined with the next lemma, will give the Euclidean 
Algorithm. 

Lemma 3. If a = b q  + r, then (a, b) = ( b, r). 

Proof. Let d = (a, b). We know that since d I a and d I b ,  it follows from 
a = b q  + r that d I r. Thus d is a common divisor of b and r. Suppose that 
c is any common divisor of b and r. We know that c I b and c I r, and it 
follows from a = b q  + r that c I a. Thus c is a common divisor of a and b ,  
and hence c :S d. Both parts of the definition of greatest common di­
visor are satisfied, and we have d = ( b , r) . 

Exercise 8. Verify that the lemma is true when a = 16, b = 6, and q = 2. 

Let us apply Lemma 3 to find the greatest common divisor of 69 and 
21 . From 69 = 3 ·21 + 7 we get (69, 21) = (21, 7), and from 2 1  = 3·7 we 
get (21, 7) = 7. The ancient Greeks would have found the greatest 
common measure of these two lengths 

a 

b 

by laying the shorter against the longer as many times as possible 

b b b 
a 

b 

and then breaking off the remainder and applying it 
r I----l 

r b 
until, as in this case, a common measure is found. The formal state­
ment of the process just carried out for a special case is 
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Theorem 3 .  The Euclidean Algorithm.  If  a and b are positive integers , 
b f= 0, and 

a=bq+r, 

b = rql + rl , 

r =r]q2 +r2' 

0::.::; r < b, 

O:Sr1 < r, 

0::.::; r2 < r] , 

then for k large enough , say k = t, we have 

and (0, b) = rt. 

Proof. The sequence of nonnegative integers 

b>r>r]>r2>" . 

must come to an end. Eventually ,  one of the remainders will be zero. 
Suppose that it is rH]' Then rt-] = rtqHl' From Lemma 3 applied over 
and over, 

(a, b) = (b, r) = (r, 1']) = (r], r2) = ... = (rH,  1'1) = rt. 

If either a or b is negative, we can use the fact that (a, b) = (-a, 
b) = (a, -b) = (-a, -b) . 

'" Exercise 9. Calculate (343, 280) and (578, 442) . 

The computation of (343 , 280) = 7: 

(2) 
(3) 
(4) 

343 = 1 . 280 + 63 
280 = 4 . 63 + 28 
63 = 2·28 + 7 
28 = 4 · 7 

can be worked backward. From (4) , 7 = 63 - 2·28. Substitute for 28 
. from (3): 7 = 63 - 2(280 - 4· 63) = 9·63 - 2· 280. Substitute for 63 
from (2): 7 = 9(343 - 280) - 2· 280 = 9· 343 - 1 1 ·  280. We have found x 
and y such that 343x + 280y = 7, namely x = 9 and y = - 1 1 .  What was 
done in this example can be done in general: 
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Theorem 4. If (a, b) = d, then there are integers x and y such that 
ax + by = d .  

Proof. Work the Euclidean Algorithm backward. The details are 
omitted. 

We will find a better method for solving ax + by = (a, b) later, so the 
computational process in Theorem 4 is not important. What is impor­
tant is the existence of x and y and not their values. To illustrate the 
usefulness of Theorem 4, here are three corollaries. 

Corollary 1. If dlab and (d. a) = 1, then dlb. 

Proof. Since d and a are relatively prime, we know from Theorem 4 
that there are integers x and y such that 

dx + ay = 1 .  

MUltiplying this by b, we have 

d(bx ) + (ab)y = b .  

The term d(bx ) can of course be divided by d, and so can (ab)y, since d 
divides abo Thus d divides the left-hand side of the last equation and 
hence divides the right-hand side too, which is what we wanted to 
prove. Note that if d and a are not relatively prime in Corollary 1, then 
the conclusion is false . For example, 618· 9, but 6�8 and 619. 

Corollary 2. Let (a, b) = d, and suppose that c i a and clb .  Then cld. 

Proof. We know that there are integers x and y such that 

ax + by = d. 
Since c divides each term on the left-hand side of this equation, c 
divides the right-hand side too. 

This corollary thU$ says that every common divisor of a pair of integers 
is a divisor of their greatest common divisor. 



Corollary 3. Ifalm, blm, and (a, b )= 1 , thenablm. 
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Proof. There is an integer q such that m = b q ,  and since a 1m we have 
a I b q .  But (a, b) = 1 ,  so Corollary 1 says that a I q .  Hence there is an 
integer I' such that q = ar, and thus m = b q  = bar. That shows that 
ablm. 

Problems'" 

* 1 .  Calculate (314, 159) and (4144, 7696). 

2. Calculate (3141, 1592) and (10001, 100083). 

" 3. Find x and y such that 314x + 159)' = 1. 

4. Find x and y such that 4144x + 7696y = 592. 

5. If N = abc + 1, prove that (N, a) = (N, b) = (N, c) = l. 
6. Find two different solutions of 299x + 247y = 13. 

7. Prove that if a I band b I a ,  then a = b or a = -b. 

8. Prove that if a Ib and a> 0, then (a, b) = a .  

9. Prove that «a, b), b) = (a, b). 

10. (a) Prove that (n, n + 1) = 1 for all n > O. 
(b) If 11 > 0, what can (11, n + 2) be? 

11. (a) Prove that (k, 11 + k) = 1 if and only if (k, 11) = l. 
* (b) Is it true that (k, 11 + k) = d if and only if (k, 11) = d? 

12. Prove: If a Ib and c Id, then ac Ibd . 

13. Prove: If dla and d l b ,  then d"lab . 

14. Prove: If c lab and (c, a) = d, then c Idb. 

15. (a) If x' + ax + b = 0 has an integer root, show that it divides b .  
(b) Ifx' + ax +b = 0 has a rational root, show that it is in fact an integer. 

* Answers to selected odd-numbered problems, those preceded by an asterisk (0). are 
provided on pp. 231ff. Comments on selected odd-numbered problems, those preceded 
by a dagger (t), are given on pp. 238ff. 
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2 
Unique Factorization 

The aim of this section is to introduce the prime n1).mbers, which are 
one of the main objects of study in number theory, and to prove the 
unique factorization theorem for positive integers, which is essential in 
what comes later. In this section, lower-case italic letters invariably 
denote positive integers . 

A prime is an integer that is greater than 1 and has no positive 
divisors other than 1 and itself. An integer that is greater than 1 but is 
not prime is called composite. Thus 2, 3 , 5 ,  and 7 are prime, and 4, 6, 8 ,  
and 9 are composite. There are also large primes: 

170,141,183,460,469,231,731,687,303 ,715,884,105,727 

is one, and it is clear that there are arbitrarily large composite numbers . 
Note that we call 1 neither prime nor composite. Although it has no 
positive divisors other than 1 and itself, including it among the primes 
would make the statement of some theorems inconvenient, in particular 
the unique factorization theorem. We will call 1 a unit. Thus the set of 
positive integers can be divided into three classes: the primes, the 
composites, and a unit. 

" Exercise 1. How many even primes are there? How many whose last 
digit is 5? 

10 
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Our aim is to show that each positive integer can be written as a 
product of primes-and, moreover, in only one way. We will not count 
products that differ only in the order of their factors as different factori­
zations .  Thus we will consider each of 

2·3·7·2, 7·3·2·2 

to be the same factorization of 84. The primes can thus be used to 
build, by multiplication, the entire system of positive integers. The first 
two lemmas that follow will show that every positive integer can be 
written as a product of primes . Later we will prove the uniqueness of 
the representation . 

Lemma 1. Every integer n, n > 1, is divisible by a prime. 

Proof. Consider the set of divisors of 11 which are greater than 1 and 
less than 11. It is either empty or nonempty. If it is empty, then n is 
prime by definition, and thus has a prime divisor, namely itself. If it is 
nonempty, then the least-integer principle says that it has a smallest 
element, call it d. If d had a divisor greater than 1 and less than d, then 
so would n, but this is impossible because d was the smallest such 
divisor. Thus d is prime, and n has a prime divisor, namely d. 

Lemma 1 can also be proved using the second principle of induction 
(see Appendix A) . The lemma is true by inspection for n = 2. Suppose 
it is true for 11 :s k. Then either k + 1 is prime, in which case we are 
done, or it is divisible by some number kl with kl :S k.  But from the 
induction assumption, kl is divisible by a prime, and this prime also 
divides k + 1. Again, we are done. 

With the aid of Lemma 1, we can prove that every positive integer 
can be written as a product of primes in at least one way. 

Lemma 2 .  Every integer n, n > 1, can be written as a product of primes. 

Proof. From Lemma 1, we know that there is a prime P I such that P I I n. 
That is, n = Plnl , where 1 :S nl < n .  I f  nl = 1, then we are done: n = PI 
is an expression of n as a product of primes . If nl > 1, then from 
Lemma 1 again, there is a prime that divides nl . That is, nl = P2nZ , 
where pz is a prime and 1 :S /12 < n I. If /12 = 1, again we are done: 
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11 = PIP! is written as a product of primes. But if n2 > 1, then Lemma 1 
once again says that 112 = PaJl3' with P3 a prime and 1 ::s n3 < 112. If 
n3 = 1 ,  we are done. If not we continue. We will sooner or later come to 
one of the ni equal to 1 ,  because n > 111 > n2 > . . . and each ni is 
positive; such a sequence cannot continue forever. For some k, we will 
have nk = 1, in which case n = PIP! ... P k is the desired expression of 11 
as a product of primes. Note that the same prime may occur several 
times in the product. 

Exercise 2 (optional) . Construct a proof of Lemma 2 using induction. 

'" Exercise 3. Write prime decompositions for 72 and 480. 

Before we show that each positive integer has only one prime de­
composition, we will prove an old and elegant theorem: 

Theorem 1 (Euclid) . There are infinitely many primes. 

Proof. Suppose not. Then there are only finitely many primes. Denote 
them by PI> P2' . ,Pr. Consider the integer 

(1) n = PIP2 ... Pr + 1 .  

From Lemma 1, we see that n is divisible by a prime, and since there 
are only finitely many primes, it must be one of PI' P2, . . . , Pro 
Suppose that it is P k. Then since 

and 

it divides two of the terms in (1) . Consequently it divides the other term 
in 0); thus Pk 1 1. This is nonsense: no primes divide 1 because all are 
greater than 1 .  This contradiction shows that we started with an incor­
rect assumption. Since there cannot be only finitely many primes, there 
are infinitely many. 

The table on page 13 shows how adding 1 tOP1P2 . . .  Pr will always 
give a prime different from PI' P2, . . . ,Pr. 

Theorem 1 is strong. We can actually identify only finitely many 
primes-the largest prime currently known is 219937 - 1, and we by no 
means know all of the primes smaller than this one. (A list of all the 
primes smaller than 10,000,000 fills a large book.) The prime 2U937 - 1 
is a very large number: it has more than 6000 digits. Although 219937 - 1 
is a large number, there are infinitely many integers larger than it, and 
only finitely many smaller. Thus, although we can name only finitely 
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r Pr PIPZ · . . Pr + 1 Prime Divisors 

1 2 3 3 
2 3 7 7 
3 5 31 31 
4 7 211 211 
5 11 2311 2311 
6 13 30031 59, 509 
7 17 510511 19, 97, 277 
8 19 9699691 347, 27953 

many primes, we may be sure that no matter how many we discover , 
there is always one more that we have yet to find. Before the develop­
ment of computers, the largest prime known was the comparatively 
puny 39-digit number displayed at the beginning of this section. Hence 
if you set out to find a prime larger than 219937 - 1 without the aid of a 
machine, you will need a great deal of time to spare-several centuries 
at the least. 

We will show how to construct a table of prime numbers before 
proving the unique factorization theorem. 

. 

. 
Lemma 3 .  If n is composite, then it has a divisor (j such that 
l < d:::5n1l2. 

Proof. Since 11 is composite, there are integers dl and dz such that 
did! = 11 and 1 < dl < n, 1 < dz < n. If dl and dz are both larger than nil!, 
then 

which is impossible. Thus, one of d1 and dz must be less than or equal to 
n112. 

Lemma 4. If n is composite, then it has a prime divisor less than or 
equal to n 112 • 

Proof. We know from Lemma 3 that n has a divisor-call it d-such 
that 1 < d :::5 n1l2. From Lemma 1, we know that d has a prime divisor 
p. Since P :::5 d :::5 n112, the lemma is proved. 

Lemma 4 provides the basis for the following method for finding 
primes, the well-known Sieve of Eratosthenes, named after the 
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Alexandrian mathematician who lived in the third century Be who is 

also remembered for being the first to estimate the circumference of the 

earth using geometry. That was a golden century for mathematics: 

besides Eratosthenes, there was Archimedes, who had one of the most 

powerful mathematical minds ever, and Euclid, who wrote his 

geometry book so well that it was used as a textbook for the next two 

thousand years. 

The idea behind the sieve is simple: the primes are the numbers left 

when all the composites are gone. Then, to find primes remove multi­

ples of 2, of 3 ,  of 5, . . . ; if we stop after removing multiples of N, the 

numbers remaining between 2 and N2 are precisely the primes less than 
N2. To see this, note that any number remaining is prime, because if it 

were composite it would have, according to Lemma 4, a prime divisor 
less than or equal to N, and all the multiples of such primes have been 

removed. 

For example, let us list the integers up to 121  with the multiples of 2 
already removed: 

2 3 5 
27 29 3 1  
53 55 57 
79 8 1  83 

105 \107 109 

7 
33 
59 
85 

1 1 1  

9 1 1  13 15  
35 37 39 41 
6 1  63 65 67 
87 89 91 93 

1 13 1 15 1 17 1 19 

17 19 21 
43 45 47 
69 71 73 
95 97 99 

121 

23 
49 
75 

101 

Now remove all the multiples of  3-every third number after 3: 

2 3 5 7 1 1  1 3  17 19 23 25 29 3 1  35 
37 41 43 47 49 53 55 59 61  65 67 71 73 
77 79 83 85 89 9 1  95 97 101 103 107 109 1 13 

1 1 5  1 1 9  1 2 1  

25 
5 1  
77 

103 

Now remove the multiples of 5, which fall in a pattern: every seventh, 

third, seventh, third, . . . number; a stencil could be made to pick 

them out, and such stencils have been made in the past: 

2 3 5 7 
43 47 49 53 
91 97 101 103 

1 1  13 17 
59 61  67 

107 109 1 13 

19 23 29 3 1  37 41  
71 73 77 79 83 89 

1 19 121  

Mter 49, the pattern is to  have a multiple of 7 every seventh, fourth, 

seventh, fourth, . . number; removing them and the multiples of 1 1 ,  
we have 
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2 3 5 7 1 1  13 17 1 9  23 29 3 1  37 41 
43 47 53 59 61  67 71 73 79 83 89 97 101 

103 1 07 1 09 1 13 

and these are all the primes less than 1 2 1 .  If there were a composite 
number in the list, from Lemma 4 it would have a prime divisor less 
than or equal to 1 1 ,  and we have removed all of the composite numbers 
with divisors 2, 3 ,  5 ,  7, and 1 1 .  To find all ofthe primes less than 10,000, 
we would only have to cross out the multiples of the 25 primes less than 
1 00 .  

Today, any sieving that i s  necessary is  done by computer, but in the 
nineteenth century, before there were computers, an Austrian as­
tronomer named Kulik constructed an enormous sieve of all the inte­
gers up to 1 00,000,000. It took him 20 years, off and on. All that work 
was so little valued that the library to which he left his manuscript lost 
the part that included the integers from 12 ,642,600 to 22,852,800. The 
simple sieve idea is quite powerful, and refinements of it-the Selberg 
Sieve, and the new Large Sieve of Linnik-are producing new results . .  

The following lemma, proved in Euclid's Elements, gives the result 
that makes unique factorization possible. For the rest of this section, 
and until further notice, the letters p and q will be reserved for primes. 

Lemma S. Ifplab, then pla orplb. 

Proof. Since p is prime, its only positive divisors are 1 and p .  Thus ( p, 
a )  = p or ( p, a )  = 1 .  In the first case, p la ,  and we are done. In the 
second case, Corollary 1 of Section 1 tells us thatp Ib, and again we are 
done. 

The next lemma illustrates a common technique: extending a result 
from 2 to any number using mathematical induction . 

Lemma 6. Ifp lala2 . .. ak, then p lai for some i, i = 1 ,  2, . . . , k .  

Proof· Lemma 6 i s  true by  inspection if k = 1 ,  and Lemma 5 shows that 
it is true if k = 2 .  We will proceed by induction . Suppose that Lemma 6 
is true for k=r. Suppose that plala2' . . ar+1• Then p l (a1a2 .. .  
ar )ar+1, and Lemma 5 lets us conclude that p iala2 . . . �r orp lar+1• In 
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the first case, the induction assumption tells us that P lai for some i, 
i = 1, 2, . . .  , r .  In the second case, P lai for i = r + 1. In either case, 
P lai for some i, i = 1 ,  2, . . .  , r  + 1. Thus, if the lemma is true for 
k = r, it is true for k = r + 1 ,  and since it is true for k = 1 and k = 2, it is 
true for any positive integer k. 

Lemma 7. Ifql,q2,' . .  ,q1f/.are primes,andp lqlq2·· ·q1f/.,thenp =qlt 
for some k. 

Proof. From Lemma 6 we know that P I q k for some k. Since P and q It 

are primes. P = q k' (The only positive divisors of q It are 1 and q k' and P 

is not 1 .) 

Theorem 2. The Unique Factorization Theorem. Any positive integer 
can be written as a product of primes in one and only one way. 

Proof. Recall that we agreed to consider as identical all factorizations 
that differ only in the order of the factors. 

We know already from Lemma 2 that any integer n, n > 1 can be 
written as a product of primes .  Thus to complete the proof of the 
theorem, we need to show thatn cannot have two such representations. 
That is, if 
(2) n =PIPZ' . . P'" and 

then we must show that the same primes appear in each product, and 
the same number of times, though their order may be different. That is, 
we must show that the integerspl>pz, . . . 'P'" arejust a rearrangement 
of the integers ql. q2 • . . .  , q r' From (2) we see that since PI In, 

PI !qlq2 . . . qT' 

From Lemma 7, it follows thatpl = qi for some i .  If we divide 

PIP! . . .  Pm = qlq'l ... qr 
by the common factor, we have 
(3) P2P3' . .  Pm = qlq2 . . .  qi-Iqi+1 .. . qT' 

Because P2 divides the left-hand side of this equation, it also divides the 
right-hand side. Applying Lemma 7 again, it follows that P2 = qj for 
somej(j = 1, 2, . . . ,i - 1, i + 1,  . . . , n). Cancel this factorfrom both 
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sides of (3), and continue the process. Eventually we will find that each 
p is a q. We cannot run out of q' s before all the p 's are gone, because we 
would then have a product of primes equal to 1, which is impossible. If 
we repeat the argument with the p ' s  and q's interchanged, we see that 
each q is ap . Thus the numbers Pl>P2,' . .  'Pm are a rearrangement of 
ql, Q2,· . .  , qr> and the two factorizations differ only in the order of the 
factors. 

The uniqueness of the prime decomposition can also be efficiently 
proved by induction, though the idea is no different. The theorem is 
true, by inspection, for n = 2. Suppose that it is true for n :S k. Suppose 
that k + 1 has two representations :  

k + 1 = PlP2' .. Pm = qlQ2' .. qT' 

As in the last proof, PI = qi for some i, so 

P2PS . . .  P'" = qlq2 ... qi-Iqi+1 . .. qT' 

But this number is less than or equal to k, and by the induction assump­
tion, its prime decomposition is unique. Hence the integers ql, q2,' . . , 
qi-l> qi+1> . . .  ,qr are a rearrangement ofp2 ' P3, . . .  ,Pm, and since 
PI = qi the proof is complete. 

Because of your long experience with the positive integers (can you 
remember what it was like not to know what 2 + 3  was? ), you may not 
find the unique factorization theorem very exciting; you may even 
think that it is obvious and self-evident. The following example is in­
tended to show that it is not as self-evident as you might think: we will 
construct a number system in which the unique factorization theorem is 
not true. Consider the integers 1, 5, 9, 13, 17,. . . ; that is, all integers 
of the form 4n + 1, n = 0, 1, . . . . We will call an element of this set 
prome if it has no divisors other than 1 and itselfin the set . For example, 
21 is pro me , whereas 25 = 5· 5 is not . 

* Exercise 4. Which members of the set less than 100 are not prome? 

In the same way that we proved Lemmas 1 and 2, we can show that 
every member of the set has a prome divisor and can be written as a 
product of promes. (You are invited to inspect the proofs of Lemmas 1 
and 2 to see if any words need to be changed.) But an example shows 
that the prome decomposition of an integer in the set is not always 
unique: 

693 = 21·33 = 9'77, 

and 9, 21, 33, and 77 are all prome. 
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From the unique factorization theorem it follows that each positive 

integer can be written in exactly one way in the form 

where ei ;::: 1, i = 1 ,  2, . . .  , k, each Pi is a prime, and Pi f= Pi for 
i f= j. We call this representation the prime-power decomposition of 

n, and whenever we write 

it will be understood, unless specified otherwise, that all the exponents 

are positive and the primes are distinct. The factor table in Appendix C 
gives the smallest prime that divides n for all n less than 10,000 and not 

divisible by 2 or 5 .  With the aid of this table, the prime-power decom­

position for any n :S 10,000 can be found readily. For example, take 

8001.  It is clearly not divisible by 2 or 5, and Table A gives its smallest 

prime factor as 3. Then 800 113 = 2667, and the table shows that 3 is a 

factor of 2667: 2667/3 = 889. Again referring to the table, we see that 

7 / 889. Finally, 889/7 = 127, which is prime. Thus 

8001 = 32. 7. 127. 

'" Exercise 5. What is the prime-power decomposition of 7950? 

To conclude this section, we note that the prime decomposition of 

integers gives another way of finding greatest common divisors besides 

the Euclidean algorithm. For example, consider n = 120 = 23 . 3 . 5 and 

m = 252 = 21• 32 . 7. We see that 22 divides m and n, but no higher power 

of 2 is a common divisor of m and n. Also, 3 divides m and n, and no 

higher power of 3 is a common divisor. Furthermore, no other prime 

divides both m and n. Thus 22.3 is the greatest common divisor of m 
and n. Given the prime-power decompositions of m and n, we can write 

m and n as products of the same primes by inserting primes with the 

exponent zero where necessary. For example, 

and 

In general, we have 

Theorem 3 .  If ei ;::: O,J; ;:::0, (i = 1,2 ,  ... , k), 

m =Pl e'P2<" . 'Pk'k and 

then 



where gj = min(eil!;), i = 1, 2, . . . , k. 
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We wi ll  omit a formal proof, but you should have no trouble convinc­
ing yourself that it is true. 

Problems 

0;. 1. Find the prime-power decompositions of 1234, 34560, and 111111. 

2. Find the prime-power decompositions of 2345, 45670, and 999999999999. 
(Note that 10111000001.) 

3. Tartaglia (1556) claimed that the sums 

1 + 2 + 4, 1+ 2 + 4 + 8, 1 + 2 + 4 + 8 + 16, 

are alternately prime and composite. Show that he was wrong. 

4. (a) DeBouvelles (1509) claimed that one or both of 611 + 1 and 6n - 1 are 
primes for all n 2: 1. Show that he was wrong. 

(b) Show that there are infinitely many n such that both 6n - 1 and 6n + 1 
are composite. 

5. Prove that if n is a square, then each exponent in its prime-power decom­
position is even. 

6. Prove that if each exponent in the prime-power decomposition of n is even, 
then 11 is a square. 

*t 7. Find the smallest integer divisible by 2 and 3 which is simultaneously a 
square and a fifth power. 

8. If dlab, does it follow that dla or dlb? 

* 9. Is it possible for a prime p to divide both nand 11 + 1 (n 2: 1)? 
10. Prove that n(n + 1) is never a square for n > O. 

*t 11. (a) Verify that 25• 9! = 2592. 
(b) Is 2' 'ab = 25ab possible for other a, b? (Here 25ab denotes the digits of 

2S'ah and not a product.) 

12. Let p be the least prime factor of n ,  where n is composite. Prove that if 
p > n 1/3, then nIp is prime. I 

*t 13. True or false? If p and q divide n, and each is greater than n1l4 , then nlpq is 
prime. 

14. Prove that if n is composite, then 2n - 1 is composite. 

*t 15. Is it true that if 2/1 - 1 is composite� then n is composite? 
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3 
Linear Diophantine Equations 

Consider the following variation on an old problem: 

In a corral there are cowboys and an odd number of horses . 
There are 20 legs in all: how many belong to horses? 

If we let h be the number of horses and c the number of cowboys in the 
corral, then we know that 

( 1) 4h + 2c = 20, 

assuming that aU the horses and cowboys are whole. This equation has 
infinitely many solutions-for example, 

h -1 0 5/3 V2 
c 12 10 20/3 10 - 2V2 

But none of these fit the requirements of the problem: we want hand c 

to be integers, and positive ones at that. 
Equations of this sort, in which we look for solutions in a restricted 

class of numbers-be they positive integers, negative integers, rational 
numbers, or whatever-are called diophantine equations, after 
Diophantus . Diophantus was probably an Egyptian who received a 
Greek education, long ago in Alexandria. It is not certain how long ago, 
but the difference between 1700 and 1850 years is not really important. 
What is important are the ideas he had, never had before by anyone 

20 
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else , and the influence of those ideas. He started the evolution of our 
algebraic notation, and he was the first to pose and solve problems that 
called for solutions in integers or rational numbers. Other diophantine 
equations we will consider in later sections include 

and 

where we will look for solutions in integers . All of these equations have 
infinitely many solutions in real or complex numbers, but the third has 
no solutions in integers except the trivial ones where either x or y is 
zero. In contrast, the first and second equations both have infinitely 
many solutions in integers. 

In this section we will consider the simplest diophantine equation: 
the linear diophantine equation 

ax + by = c ,  

where a ,  b ,  and c are integers. We want to find solutions in integers x 
and y. The equation ax + by = c clearly has infinitely many solutions in 
rational numbers (and hence infinitely many solutions in real numbers), 
namely those given by 

x = t, y = (c - at)/b 

for any rational number t, if b F O. But such an equation may have no 
solutions at all in integers . For example, 2x + 4y = 5 has none. 

* Exercise 1 .  Why not? 

With the aid of results from Section 1 ,  we can find all of the integer 
solutions of ax + by = c .  Before we start, let us solve the horses and 
cowboys problem ( 1) by trial. Dividing both sides of the equation by 2, 
we have 2h + c = 10, or 

10 - c h = -- · 
2 

Since h and c must be positive integers, we may let c = 1, 2, . . .  , 9  
(if c > 9, then h is not positive) and calculate the corresponding values 
of h: 

c 
It 

1 2 3 4 
9/2 4 7/2 3 

5 6 7 8 
5/2 2 3/2 1 

9 
1/2 

Hence the diophantine equation has four solutions in positive integers: 
(c, It) = (2, 4) , (4, 3) , (6, 2) , and (8,  1) . But since the problem said that 
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the corral contained an odd number of horses and cowboys (plural) , we 
get the unique answer: 12 legs belong to horses. Trial is sometimes the 
best way to solve a diophantine equation, but we want something surer. 

If we can find just one solution of the linear diophantine equation, 
then we can find infinitely many. (In keeping with our convention that 
lower case italic letters denote integers unless we say otherwise, by 
"solution" we mean "solution in integers. ") We prove this in 

Lemma 1. If xo, Yo is a solution of ax + by = c ,  then so is 

Xo + bt, 

for any integer t. 

Yo - at 

Proof. We are given that aXe + byo = c. Thus 

a(xo + bt) + b(yo - at) = axo + abt + bYe - bat 

= axe + byo 

= c, 

so Xo + bt, Yo - at satisfies the equation too. For example, we can see 
by inspection that 

5x + 6y = 17 

is satisfied by x = I andy = 2. It follows from Lemma 1 thatx = 1 + 6t, 
y = 2 - 5f is also a solution for any integer t. Thus we can write down 
as many solutions as we please: 

0 1 -1 3 -5 -17 -1000 

X 1 7 -5 19 -29 103 - 5999 

y 2 -3 7 -13 27 -83 5002 

Each pair x, y satisfies 5x + 6y = 17. 

" Exercise 2. Find by inspection a solution of x + 5y = 10 and use it to 
write five other solutions .  

The next lemma lets us know when an equation has a solution and 
when it does not. 

Lemma 2. If (a, b )tc, then ax + by = c has no solutions, and if (a, b) Ie, 
then ax + by = c has a solution. 
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Proof. Suppose that there ave integers xo , Yo such that axo + byo = e .  
Since (a, b) l axo and (a, b) lbyo, it follows that (a , b) l e .  Conversely ,  
suppose that (a, b )  I e . Then e = m (a, b) for some m.  From Theorem 4 of 
Section 1 ,  we know that there are integers r and s such that 

ar 1+ bs = (a, b) .  

Then 

a(rm) + b(sm) = mea, b) = e ,  

and x = I'm, y = sm is a solution . 

* Exercise 3. Which of the following linear diophantine equations is imc 
possible? (We will say that a diophantine equation is impossible if it has 
no solutions.) 

(a) 14x + 34y = 90. (b) 14x + 35y = 91 . (c) 14x + 36y = 93 . 

Put d = (a, b) . Lemma 2 says that if ax + by = e has a solution, then 
d i e .  Put a = do ' , b  = db ' ,  and e = de' .  If we divide ox + by = e by d we 
get 

a 'x + b 'y = e ' ;  

this equation has the same set of solutions as ax + by = e ,  and we know 
from Theorem 1 of Section 1 that (a ' , b ' )  = 1 . Thus, if a linear diophan­
tine equation has solutions, then we can find them from an equation 
whose coefficients are relatively prime. For example , the first two 
equations of Exercise 3 are 

7x + 17y = 45 

and (7 , 17) = (2 , 5) = 1 .  

and 2x + 5y = 13 , 

The equation 2x + 5y = 13 has for one solution x = 4 and y = 1 ,  and 
from Lemma 1 we know that x = 4 + 5f , Y = 1 - 2t is a solution for any 
integer t .  In the next lemma, we will show that these are all the so­
lutions to the equation. The problem of finding all solutions of a 
diophantine equation is quite distinct from the problem of finding some 
solutions . It is also more difficult in general . For example, the equation 

has solutions given by 

x = 1 - (s - 3 t)(S2 + 3t2), 

Y = - 1  + (s + 3 t)(S2 + 3t2) ,  
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z = s + 3 t  - (S2 + 3 t2)2, 
W = -s + 3t + (S2 + 3 t2)2, 

where s and t may be any integers . You may verify this by multiplica­
tion, if you have the patience, but not all integer solutions are given by 
this formula. 

Lemma 3.  Suppose that (a , b) = 1 and xo,yo is a solution of ax + by = c .  
Then all solutions of a x  + by = c are given by -

where t is an integer. 

x = Xo + bt , 
y = Yo - at, 

Proof. We see from Lemma 2 that the equation does have a solution, 
because (a, b) = 1 and 1 1  c for all c .  Then, let r, s be any solution of 
ax + by = c .  We want to show that r = Xo + bt and s = Yo - at for some 
integer t .  From axo + byo = c follows 

c - c = (axo + byo) - (ar + bs) 

or 

(2) a(xo - r) + b(yo - s) = o. 

Because a la (xo - r) and a 1 0, we have a l b(yo - s) .  But we have sup­
posed that a and b are relatively prime. It follows from Corollary l of 
Section 1 that a I (Yo - s) .  That is , there is an integer t such that 

(3) at = Yo - s .  

Substituting in (2) , this gives 

a(xo - r) + bat = 0;  

because a 1= 0, we may cancel it  to get 

(4) 

But (3) and (4) say that 

Xo - r + bt = O. 

s = Yo - at ,  
r = Xo + bt; 

since r, s was any solution, the lemma is proved. 

For example, ISh + 80y = 1980 has a solution (found by inspection) 
of x = 100 andy = 1 .  Lemma 3 then says that all solutions are given by 
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y = 1 - 19t, 

where t is an integer. In particular, all solutions with x and y positive 
are (x, y) = ( 100, 1) and (20, 20). 

Up to now, we have assumed that neither a nor b was 0. If either is 0, 
the problem of solving ax + by = c is trivial. If a = 0, then x can take on 
any value, andy can take on one or more, depending on whether by = c 
has or does not have a solution in integers . It is similar if b = o. 

We can summarize the results of Lemmas 1 to 3 as follows : 

Theorem 1 .  The linear diophantine equation ax + by = c has no so­
lutions if (a, b)lc .  If (a, b) I e , there are infinitely many solutions, 

b a x = r + (a, b) t, y = s - (a, b) t, 

where r, s is any solution and t is an integer. 

In Section 5 we will see how to find the solution r, s using congru­
ences. Theorem 1 should not be committed to memory, since it is only 
a statement of the process of solving linear diophantine equations, and 
the process is easy. For example, let us find all the solutions of 
2x + 6y = 18 . Dividing out the common factor, we havex + 3y = 9 .  By 
inspection, y = 0, x = 9 is a solution . Hence all solutions are given by 

(5) x = 9 + 3 t ,  y = -t , 

where t is an integer. 

" Exercise 4. Find all solutions of 2x + 6y = 20. 

" Exercise 5. Find all the solutions of 2x + 6y = 18 in positive integers . 
(Note that from (5) , this is the same as asking for integers t such that 
9 + 3t > 0 and -( > 0 .. ) 

Linear diophantine equations can often be disguised in the "story 
problem" so dreaded by students, such as the one at the start of this 
section. Several of them appear among the problems, and they are not 
there solely to make students' lives miserable. Solving one is doing in 
miniature what a mathematician must do when confronted with a real 
problem from the real world: translate the problem into a mathematical 
one (that is the hard part), deal with the mathematical problem (that 
can be hard too), and apply the result to the original problem. 
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Problems 

* 1 .  Find all the integer solutions ofx + y = 2, 3x - 4y = 5, and 15x + 16y = 17 .  

2 .  Find all the integer solutions of  2x + y = 2 ,  3x - 4y = 0 ,  and 
15x + 18y = 17.  

" 3 .  Find the solutions in positive integers of x + y = 2, 3x - 4y = 5 ,  and 
6x + 15y = 5 1 .  

4 .  Find all the solutions in positive integers of 2 x  + y = 2, 3x - 4y = 0,  and 
7x + 15y = 5 1 .  

" 5 .  Find all the positive solutions in integers of 

x + y + z = 3 1 ,  
x + 2y + 3 z  = 4 1 .  

6.  Find the five different ways a collection of 100 coins-pennies, dimes, and 
quarters-can be worth exactly $4 . 99 .  

" 7. A man bought a dozen pieces of fruit-apples and oranges-for 99  cents. If 
an apple costs 3 cents more than an orange , and he bought more apples 
than oranges,  how many of each did he buy? 

8. The enrollment in a number theory class consists of sophomores, juniors, 
and backward seniors. If each sophomore contributes $ 1 .25 ,  each junior 
$ .90 , and each senior $ .50 , the instructor will have a fund of $25. There are 
26 students; how many of each? 

* 9. The following problem first appeared in an Indian book written around 850 
A D .  Three merchants found a purse along the way . One of them said, "If ! 
secure this purse, I shall become twice as rich as both of you with your 
money on hand . "  Then the second said, "I shall become thrice as rich as 
both of you." The third man said, "I shall become five times as rich as 
both of you ."  How much did each merchant have,  and how much was in 
the purse? 

10. A man cashes a check for d dollars and c cents at a bank . Assume that the 
teller by mistake gives the man e dollars and d cents . Assume that the man 
does not notice the error until he has spent 23 cents . Assume further that he 
then notices that he has 2d dollars and 2e cents .  Assume still further that he 
asks you what amount the check was for. Assuming that you can accept all 
the assumptions, what is the answer? 
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Congruences 

Besides being quite pretty, congruences have many applications and 
will be used constantly in what follows. No one who lacks an acquain­
tance with congruences can claim to know much about number theory. 
As an example of their usefulness, it is easy to show , by using congru­
ences, that no integer of the form 8n + 7 is a sum of three squares. We 
will verify this later. 

We say that a is congruent to b modulo m (in symbols , a """ b (mod m)) 
if and only if m I (a - b) , and we will suppose always that m > O. 

For example , 1 ... 5 (mod 4) , -2 '" 9 (mod 1 1) ,  6 "",  20 (mod 7) ,  and 
720 "" 0 (mod 10) .  

'" Exercise 1 .  True or false? 91 ,.. o (mod 7) . 3 + 5 + 7 "'"  5 (mod 10) .  
-2 '" 2 (mod 8). 1 12 == 1 (mod 3) .  

Really , m I (a - b)  and a "'" b (mod m )  are only different notations for 
the same property, but a good notation can make things easy to see. 
Notation is vital. The ancient Greek mathematicians from 600 Be to 300 
AD did not develop algebra at all. though they did such a fine job with 
geometry that Euclid' s  Elements was used as a textbook for 2000 years. 
It was not because they could not have-there is no question that 
Archimedes could have solved the general cubic polynomial equation, 
perhaps in his head. if he had put his mind to it and had had a satisfac-

27 
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tory notation-it was the lack of notation that stopped them. The solu­
tion of the cubic had to wait another 1700 years or so. The congruence 
notation was invented by the great mathematician and physicist Carl 
Friedrich Gauss ( 1 777-1855) , to whom is due quite a bit of the content 
of this book, and any other number theory book. His notation simplifies 
the proofs of theorems that would be difficult even to state without it. 
Another example of the value of a good notation is in calculus , in which 
Leibniz' s  notation (dy/dx, fy dx) was superior to Newton's (y, y ' ) .  

There is  another way to look at congruences: 

Theorem 1 .  a � b (mod m) if and only if there is an integer k such that 
a = b + km .  

Proof. Suppose that a :;,  b (mod m). Then, from the definition of con­
gruence , m I (a - b) . From the definition of divisibility , we know that 
since there is an integer k such that km = a - b ,  then a = b + km . Con­
versely, suppose that a = b + km . 

'" Exercise 2. Complete the proof. 

Theorem 2. Every integer is congruent (mod m) to exactly one of 0, 1 ,  
. . .  , m - 1 . 

Proof. Write a = qm + r ,  with 0 :s; r < m .  We know from Theorem 2 of 
Section 1 that q and r are uniquely determined. Since a ""  r (mod m), 
the theorem is proved. 

We call the number r in the last theorem the least residue of a (mod 
m). For example , the least residues of 7 1  modulo 2 ,  3 ,  5 ,  7, and 1 1  are 1 ,  
2, 1 ,  1 ,  and 5 ,  respectively . 

'" Exercise 3. To what least residue (mod 1 1) is each of 23 , 29, 3 1 ,  37, and 
41  congruent? 

Yet another way of looking at congruences is given by 

Theorem 3. a '"  b (mod m) if and only if a and b leave the same remain­
der on division by m . 
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Proof. If a and b leave the same remainder r when divided by m ,  then 

and b = qzm + r 

for some integers ql and q2 ' It follows that 

a - b = (qjm + r) - (q2m + r) = m {l j - Q2) ' 

From the definition of divisibility , we have m I (a - b) .  From the defini­
tion of congruence, we conclude that a "'"  b (mod m).  To prove the 
converse ,  suppose that a """ b (mod m ) . Then a !!!lE b "" r (mod m), where 
r is a least residue modulo m .  Then from Theorem 1 ,  

and b = Q2m + r  

for some integers Q 1 and q2 ; since 0 $ r < m ,  the theorem is proved . 

For example,  divide 1 609 by 197 :  the quoti�nt is 8 and the remainder 
is 33.  Divide 1215 by 1 97: the quotient is 6 and the remainder is 33 . It 
follows that 1609 "" 1215  (mod 197) , and in fact 

1 609 - 1215  = 394 = 2 . 197.  

It follows from Theorems 1 and 3 that the phrases "n "" 7 (mod 8)," 
"n = 7 + 8k for some integer k ,"  and "n leaves the remainder 7 when 
divided by 8" are different ways of saying the same thing. 

" Exercise 4. Say "n is odd" in three other ways.  

Exercise 5. Prove that p I a if and only if a "'" 0 (mod p).  

Congruence acts like equality i n  many way s .  

Lemma 1 .  For integers a, b, c ,  and d 
(a) a .... a (mod m). 
(b) If a "" b (mod m),  then b ... a (mod m). 
(c) If a "" b (mod m) and b "'" c (mod m ) ,  then a .,. c (mod m). 
(d) If a ""  b (mod m) and c "" d (mod m) , then a + c ,... b + d (mod 

m).  
(e) I f  a "" b (mod m) and c "'" d (mod m), then ac "" bd (mod m). 

Proof. All of these follow directly from the definition of congruence . .  
Here is a proof of (e): We are given that b - a = km and d - c = jm for 
some integers k and j; thus 



30 Section 4 

ae - bd = ae - (a + km )(e + jm) 

== ae - ae - ajm - ekm - kjm2 
= m(-aj - ek - kjm);  

from the definition of congruence, ae  "'" bd (mod m).  

Exercises 6 ,  7 ,  8 ,  and 9. Prove parts (a) , (b) , (c) , and (d) . 

Note that the lemma implies that we may substitute in congruences 
just as we do in equations . For example, if x '"  2 (mod 5) , then 

2x2 - x + 3 "'" 2 ·  4 - 2 + 3 ,.. 9 """ 4 (mod 5) . 

Although ab = ae and a 1= 0 imply b = e for all integers a, b, and e, it 
is not true that ab ,... ac (mod m) and a "  0 (mod m) imply b "'" e (mod 
m). (The symbol " means "not congruent to.")  For example, 

3 · 4 "", 3 · 8 (mod 12) but 4 � 8 (mod 12) . 

"' Exercise 10. Construct a like example for modulus 10. 

Although we cannot cancel freely, all is not lost, as we shall see from 

Theorem 4. If ae "" be (mod m) and (e, m) = 1 ,  then a "'"  b (mod m) . 

Proof. From the definition of congruence , m I (ae - be) ; consequently ,  
m ! c(a - b) .  Because (m, c )  = 1 ,  we can conclude from Theorem 5 of 
Section 1 that m I (a - b) .  That is, a ""  b (mod m).  

'" Exercise 1 1 .  What values of x satisfy 

(a) 2x "'" 4 (mod 7)? 

(Hint for (b): 1 ... 8 (mod 7) .) 

(b) 2x "" 1 (mod 7)? 

We can, then, cancel a factor that appears on both sides of a congru­
ence if it is relatively prime to the modulus . We now consider the case 
in which the factor and the modulus are not relatively prime. 

Theorem 5. If ae "" be (mod m) and (c, m) = d, then a "'"  b (mod mid) . 
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Proof. If ae 5 be (mod m), then m I c(a - b) and mid I (c!d)(a - b) . Since 
we know that (mid, eld) = 1 ,  from Theorem 5 of Section 1 we get 
mid I (a - b) , so a e b (mod mid) . 

That is, we can cancel a common factor from both sides of a congru­
ence if we divide the modulus by its greatest common divisor with the 
factor. For example, 30x "'" 27 (mod 33) implies lOx m 9 (mod 1 1) .  

" Exercise 12. Which x will satisfy 2x "" 4 (mod 6)? 

Now we can see how easy it is to show that no integer of the form 
8n + 7 is the sum of three squares .  Suppose that k = 8n + 7 is the sum 
of three squares . Then k E 7 (mod 8) and k = a2 + b2 + e2 for some 
integers a, b, and e .  Thus 

a2 + b2 + e2 "" 7 (mod 8) . 

We now show that this last congruence is impossible for any integers a, 
b, and e .  What values can x2 assume , modulo 8? Every integer has one 
of 0, 1 , 2 , 3 , 4, 5, 6, and 7 for a least residue (mod 8) , and 

()2 "" 0 ,  P "" 1 ,  
52 "" 1 ,  

22 ... 4 ,  
62 "" 4 ,  

32 "" 1 
72 - 1 ,  

all modulo 8 .  Thus the square of any integer i s  congruent modulo 8 to 
one of 0, 1 ,  and 4. It is impossible to make any combination of three 
numbers selected from 0, 1 ,  and 4 add up to anything congruent to 7 
(mod 8) . (The statements 1 + 1 + 4 ""  6 and 0 + 4 + 4 1m 8 (mod 8) are 
as close as you can come.) Hence a2 + b2 + e2 is never congruent to 7 
(mod 8) for any integers a, b, and e .  Thus a2 + b2 + e2 = 8n + 7 is an 
impossible equation. 

You may already know the handy test for divisibility by 9: an integer 
is divisible by 9 if and only if the sum of its digits is divisible by 9, and 
you may already know why it is true . Congruences make the proof 
trivial. Since 10 "", 1 (mod 9), 10" m In "", 1 (mod 9) , and that is all we 
need to prove 

Theorem 6. Every integer is congruent (mod 9) to the sum of its digits . 

Proof. Take an integer n, and let its digital representation by 
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That is, 

n = dlclOk + dlc_1 101c-1 + dlc_21Ok-2 + . . . + d1 l01 + dolOo 

"'" d� + dlc-1 + dlc-2 + . . . + do (mod 9) , 

which is what we wanted to show. 

This theorem shows why the process of casting out nines to check an 
addition or a mUltiplication works . The rule was a feCJ.ture of many 
arithmetic books in the past, when long columns of numbers had to be 
added by hand and there were no mechanical devices to perform mul­
tiplications. Now we can all have pocket calculators, but it is wise to be 
prepared for the time when our batteries fail . If two numbers are equal , 
they are congruent to any modulus, 9 in particular. So if we are told 
that (3 14) ( 159) = 49826, we can see right away that we are being lied to , 
because 

while 

(3 14)(159) "'" (3 + 1 + 4)(1 + 5 + 9) "'" 8 · 15 "" 8(1  + 5) 
== 48 "", 4 + 8 "'" 12 "" 1 + 2 "" 3 (mod 9) , 

49826 ... 4 + 9 + 8 + 2 + 6 "'" 29 "'" 2 + 9 """ 1 1  "'" 1 + 1 
... 2 (mod 9) : 

the numbers are not congruent (mod 9) , so they cannot be equal. 

Problems 

" 1 .  Find the least residue of 1492 (mod 4) , (mod 10) ,  and (mod 1 0 1 ) .  

2 .  Find the least residue o f  1 789 (mod 4) , (mod 1 0) ,  and (mod 10 1).  

3 .  Prove or disprove that if  a - b (mod m),  then a' "" b' (mod m) .  
4 .  Prove o r  disprove that i f  a ' "" b2  (mod m ) ,  then a ""  b or -b (mod m). 

8 5 .  Find all m such that 1 066 "" 1776 (mod m). 

6. Find all m such that 1848 "" 1 9 1 4  (mod m) .  
" 7 .  If k "" 1 (mod 4) , then what is 6k + 5 congruent to (mod 4)? 

8. Show that every prime (except 2) is congruent to I or 3 (mod 4) . 

9. Show that every prime (except 2 or 3) is congruent to I or 5 (mod 6) . 

1 0 .  What can primes (except 2, 3 ,  or 5) be congruent to (mod 30)? 
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* 1 1 .  In the multiplication 31415 · 92653 = 2910 93995, one digit in the product is 
missing

'�nd all the others are correct. Find the missing digit without doing 

the multiplication. 

12. Show that no square has as its last digit, 2, 3 , 7 ,  or 8. 

'" 13 .  What can the last digit of a fourth pDwer be? 

14. Show that the difference Df two cDnsecutive cubes is never divisible by 3 .  

1 5 .  Show that the difference Df two consecutive cubes is never divisible b y  5 .  

16 .  Show that 

dkl0k + dk_1IOk-1 + . . .  + dllO + do 
"" do - d1 + d2 - d3 + . . .  + ( - l)lrdlt (mOod 1 1) 

and deduce a test for divisibility by 1 1 .  
'" 17. A says, "27 , 182,8 18,284,590,452 i s  divisible by 1 1 . "  B says, "No, it isn' t." 

Who is right? 

18 .  A palindrome is a number that reads the same backward as forward . 
Examples are 22 , 133 1 ,  and 935686539. 

(a) Prove that every four-digit palindrome is divisible by 1 1 .  
(b) What about six-digit palindromes? 

19. ShDW that if n "" 4 (mOod 9) , then n cannot be written as the sum Df three 
cubes . 

20. ShDw that for k > O and m ;e: 1 , x  � 1 (mod m�") implies x'· "" 1 (mod mk+ ' ) .  
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5 
Linear Congruences 

Mter defining congruences and studying some of their properties, it is 
natural to look at congruences involving unknowns, like 3x "'" 4 (mod 5) 
and X l7 + 3x - 3 "'" 0 (mod 3 1) ,  and see how to solve them, if we can. 
The simplest such congruence is the linea r congruence ax "'" b (mod m),  
and this i s  what this section i s  devoted to . The congruence ax "'" b (mod 
m) has a solution if and only if there are integers x and k such that 
ax = b + km . Hence, the problem of solving linear congruences is es­
sentially the same as that of solving linear diophantine equations, and 
Theorem I of this section is the same as Theorem 1 of Section 3 ,  but in 
a different notation. 

If one integer satisfies ax "'" b (mod m), then there are infinitely many. 
For example, the table below shows that 3x == 4 (mod 5) is true if x = 3 

x 

3x (mod 5) 
1 0 1 2 3 4 5 6 7 8 9  

° 3 I 4 2 0 3 1 4 2  
or x = 8,  and it is clear that it is also true if x = 1 3 ,  18 ,  23 , . . .  or 
x = -2, -7 , - 12,  . . . .  In general, if t is an integer such that ar "'" b 
(mod m) , then all of the integers t + m, r + 2m ,  . . .  , r  - m ,  t - 2m • 

. satisfy the congruence, since 
a (t + km) "'" at "'" b (mod m) 

34 
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for any integer k .  Among the integers r + km , k = 0, ± 1 ,  ±2,  . . . , 

there will be exactly one-say s-that satisfies 0 :$ s < m . This is be­
cause every integer lies between two successive multiples of m . If r 
satisfies the congruence and km :$ r < (k + l)m for some k, then 

o :$ I' - km < m ;  we can put s = r - km . We will single this integer out 

and say that by a solution to ax E b (mod m),  we mean a number r such 

that ar "'" b (mod m) and r is a least residue (mod m) . Thus , the solution 

to 3x "'" 4 (mod 5) is 3 ,  because it makes the congruence true and it is a 
least residue (mod 5) .  

Unlike the familiar linear equation ax = b ,  the linear congruence 
ax "'" b (mod m) may have no solutions, exactly one solution , or many 

solutions .  For example, 2x "" 1 (mod 3) is satisfied by x = 2 and for no 

other values of x that are least residues (mod 3) . Hence it has just one 
solution, namely 2. The congruence 2x ... 1 (mod 4) has no solutions, 
because 2x is congruent to 0 or 2 (mod 4) for any x. The congruence 

2x "'" 4 (mod 6) has two solutions, 2 and 5. 

* Exercise 1 .  Construct congruences modulo 1 2  with no solutions, just 
one solution, and more than one solution. 

,. Exercise 2. Which congruences have no solutions? 

(a) 3x =" 1 (mod 10) ,  (b) 4x iE 1 (mod 10) ,  ( c) 5x � 1 (mod 10) ,  
(d) 6x "'" 1 (mod 1 0) ,  (e) 7x � 1 (mod 10) .  

* Exercise 3 (optional) . After Exercise 2 ,  can you guess a criterion for 
telling when a congruence has no solutions ? 

We will now set out to prove a theorem that will let us see how many 

solutions a linear congruence has . 

Lemma 1 .  I f  (a, m)%b , then ax "" b (mod m) has no solutions . 

Proof. We will prove the contrapositive, which is logically the same 
thing: ifax =" b (mod m) has a solution , then (a, m) l b .  Suppose that r is 
a solution . Then ar ... b (mod m) , and from the definition of congruence , 
m I (ar - b) , or from the definition of divides ,  ar - b = km for some k .  
Since (a, m) l a  and (a, m) l km, it follows that (a, m) l b .  

For example. 6x =" 7 (mod 8) has no solutions . 
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Lemma 2. If (a, m) = 1 ,  then ax "" b (mod m) has exactly one solution. 

Proof. Since (a , m) = 1 ,  we know that there are integers r and s such 
that ar + ms = 1 .  Multiplying by b gives 

a(rb) + m(sb) = b .  

We see that arb - b is a mUltiple of m ,  or 
a(rb) "" b (mod m) . 

The least residue of rb modulo m is then a solution of the linear congru­
ence. 

It remains to show that there is not more than cine solution. Suppose 
that both r and s are solutions. That is, since 

ar "'" b (mod m) and as "'" b (mod m) , 

then ar "'" as (mod m) . Because (a, m) = 1 ,  we can apply Theorem 4 of 
the last section, cancel the common factor, and get r "'" s (mod m). That 
is, m I (r - s) . But r and s are least residues (mod m), so 

o :5 r < m and 0 :5 S < m . 

Thus - m < r  - s  < m ;  together with m I (r - s) ,  this gives r - s = 0, or 
r = s ,  and the solution is unique. The above argument is quite general 
and will be used often: if two least residues (mod m) are congruent 
(mod m), then they are equal. 

Inspection is one way of solving congruences with small moduli, and 
another is substituting all possible values for the variable. But the best 
way is to manipulate the coefficients until cancellation is possible. For 
example, to solve 4x � 1 (mod 15) ,  we can write 

4x "" 1 "'" 1 6  (mod 15) 

and cancel to get x "'" 4 (mod 1 5) .  As another example, let us solve 
14x "'" 27 (mod 3 1) .  From 

14x "'" 27 "'" 58 (mod 3 1) 

we get 7x == 29 (mod 3 1) .  W� continue adding 3 1  until we can cancel: 
7x "" 29 "", 60 "'" 9 1  (mod 3 1) ,  

so we get x "'" 1 3  (mod 3 1) ,  and 1 3  is the solution. 
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This method is the best to use when solving l inear diophantine equa­
tions . The equation ax + by = c implies the two congruences 

ax "'" c (mod b) and by """ c (mod a). 

We can choose either one,  solve for the variable,  and then substitute 
the result into the original equation to get all the solutions . For exam­
ple , let us solve 9x + 16y = 35. This gives 16y ... 35 (mod 9) or 7y "'" 35 
(mod 9) , from which we get y "" 5 (mod 9) . That is , y  = 5 + 9t for some 
integer t .  Substituting this in the original equation, we get 

9x + 16(5 + 9t) = 35,  

or 9x + 144t = -45 , or x + 16t = -5. We thus have all the solutions: 

x = -5 - 161, 
y = 5 + 9t, 

t an integer. 

.. Exercise 4. Solve 

(a) 8x "'" 1 (mod 15) , (b) 9x + lOy = 1 1 .  

There remains the c�se where (a , m) I b and (a , m) 1= 1 .  Cancellation 
reduces this to the case (a, m) = 1 .  For example ,  to solve 6x "'" 15 (mod 
33) ,  apply Theorem 4 of the last section to get 2x ... 5 (mod 1 1) which is 
satisfied by all integers x "'" 8 (mod 1 1) .  The solutions to the original 
congruence are all of 

_
the least residues (mod 33) which satisfy it, and 

these are 8, 19, and 30: (6, 33) = 3 ,  and the congruence has three 
solutions . This is what happens in general. 

Lemma 3 .  Let d = (a , m) .  If d l b , then ax "" b (mod m) has exactly d 
solutions . 

Proof. If we cancel the common factor, we get a congruence 
(ald)x "" (bid) (mod mid) , which we know has exactly one solution , be­
cause (aid, mid) = 1. Call it r, and let s be any other solution of 
ax "'" b (mod m). Then ar ;;;;; as "'" b (mod m), and it follows from Theo­
rem 5 of the last section that r "" s (mod mid). That is, s - r = 
k(mld) or s = r + k(mld) for some k .  Putting k = 0 ,  1 ,  . . .  , d - 1 ,  we 
get numbers which are least residues (mod m), since 

o ::=;: r + k(mld) < (mid) + (d - l)(mld) = d(mld) = m ,  
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and they all satisfy ax 2 b (mod m) , because 

(a/d)(r + k(m/d) "'" (ald)r '"'" bid (mod m/d) , 

and this implies 

a (r + k(m/d» "" b (mod m).  

" Exercise 5.  Determine the number of solutions of each of the following 
congruences: 

3x "'" 6 (mod 1 5) ,  4x "'" 8 (mod 1 5) ,  5x ;;E 10 (mod 15) , 

6x E 1 1  (mod 1 5) ,  7x '" 14  (mod 1 5) .  

* Exercise 6 .  Find all of the solutions of ix "'" 1 0  (mod 15) .  

We can summarize the results of Lemmas 1 to 3 in 

Theorem 1 .  ax "" b (mod m) has no solutions if (a, m)tb . If (a. m) \ b ,  
then there are exactly (a . m)  solutions . 

" Exercise 7. Solve the rest of the congruences in Exercise 5. 

In a Chinese work on mathematics written more than 1000 years ago, 
there was a problem like , "Find a number that leaves a remainder of 1 
when divided by 3 ,  of 2 when divided by 5 ,  and of 3 when divided by 
7." It is hard to imagine a practical situation where such a problem 
could arise. Mathematics was developed to deal with problems coming 
from commerce, government, astronomy, and religion, and this one 
does not seem to come from any one of those. Yet Babylonian clay 
tablets , written more than 2000 years ago, contain some types of cubic 
polynomial equations and their solutions, and those do not arise in 
everyday life either. Both are examples of the fascination that mathe­
matics has had for the human mind-for some human minds, anyway. 
After the practical problems are solved, mathematics is interesting for 
its own sake. 

We will now consider, for its own sake , and because it is useful 
elsewhere in number theory, how to solve problems like the ancient 
Chinese one mentioned above. In our notation, the problem is to find x 
such that 

X "'"  1 (mod 3) , x 52 2 (mod 5) , and X ""  3 (mod 7) . 
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, Exercise 8. Verify that 52 satisfies each of the three congruences . 

The first congruence says that x = 1 + 3k1 for some k1 •  Substituting this 
into the second congruence, we see that kj must satisfy 

1 + 3kj � 2 (mod 5). 

Solving, we get kj =" 2 (mod 5) . That is, kj  = 2 + 5k2 for some k2 ' and 
thus 

x = 1 + 3kj = 1 + 3(2 + 51(2) = 7 + 1 5k2 .  

This x satisfies the first two congruences . If in addition x satisfies the 
third, we must have 

7 + 1 51<2 "" 3 (mod 7) . 

Solving for k2 ' we get k2 ... 3 (mod 7) . Thus 
x = 7 + 1 5(3 + 7ks) = 52 + 105ks 

satisfies all three congruences for any integer k3 • Otherwise expressed, 
any X ""  52 (mod 105) satisfies the three congruences . In fact , 52 is the 
unique solution modulo 105.  

The next theorem amounts to nothing more than a statement that the 
same procedure will always work. 

Theorem 2. The Chinese Remainder Theorem. The system of congru­
ences 
( 1 )  X "'"  0i  (mod In ;) , i = 1 ,  2, . . .  , k ,  
where (In ; ,  mj) = 1 if i f-j ,  has a unique solution modulo In jm2 . . •  mk'  

Proof. We first show, by induction, that system (1)  has a solution. The 
result is obvious when k = 1 .  Let us consider the case k = 2 .  If x "'" 0 j 
(mod In j) , then x = OJ  + kjmj  for some k j •  If in addition x "" O2 (mod 
1n2) ,  then 

or 
kjm !  "" 02 - O J  (mod m2) '  

Because vnz , m j) = 1 ,  we know that this congruence , with kj as  the 
unknown, has a unique solution modulo m2 • Call it t .  Then kl = t + k2m2 f
or some kz, and 
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x = aJ + (t + k2m2)ml ... a l  + tml (mod mlm2) 

satisfies both congruences .  
Suppose that system (1) has a solution (mod m lm2 . . . mk) for 

k = I' - 1. Then there is a solution, s ,  to the system 
x "'"  ai (mod mi) , 

But the system 
i = 1, 2 ,  . . . , I' - 1. 

x "'"  s (mod mJm2 . . . mr-l), 

x '"  ar (mod m r) 

has a solution modulo the product of the moduli, just as in the case 
k = 2, because (mlmz 

. . .  mk- I ,  mk) = 1 .  (This statement is true be­
cause no prime that divides mi , i = 1, 2,  . . .  , k  - 1 ,  can divide mk') 

It is easy to see that the solution is unique. If I' and s are both 
solutions of the system, then 

r ""' s ""' a , (mod m ;) , i = 1 , 2, . . . , k, 

so mi l (r - s) , i = 1 , 2,  . . . , k. Thus r - s is a common mUltiple of m l ,  
m2, ' . . , mk,  and because the moduli are relatively prime in  pairs, we 
have mlm� . . . mk I (r - s) .  But since r and s are least residues modulo 
m1mZ '  • • mk' 

whence I' - s  = O.  

Problems 

"t 1 .  Solve each of the following: 

2� � 1 (mod 17) .  

3x � 6 (mod 18) .  

2 .  Solve each of the following: 

3x "" 1 (mod 17) .  

40x "" 777 (mod 1777) . 

21:' ... 1 (mod 19) .  11:' ''' 1 (mod 19). 
4.1.' "" 6 (mod 1 8) .  20x ." 984 (mod 1984). 

" 3. Solve the systems 

(a) x "'"  1 (mod 2) , X ""  1 (mod 3) . 
(b) X "" 3 (mod 5) , x  "" 5 (mod 7) , x "" 7 (mod 1 1) .  
(c) 2, "" 1 (mod 5) , 3x "'"  2 (mod 7) , 4x '" 3 (mod 1 1) .  

4 .  Solve the systems 

(a) x � I (mod 2) , X ""  2 (mod 3 ) .  
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(b) x "'" 2 (mod 5) , 2x "" 3 (mod 7) , 3x "" 4 (mod 1 1) .  
(c) x "'"  3 1  (mod 41) ,  x '"  5 9  (mod 26). 

" 5. What possibilities are there for the number of solutions of a linear congru­
ence (mod 20)? 

6. Construct linear congruences modulo 20 with no solutions, just one solu­
tion , and more than one solution . Can you find one with 20 solutions? 

'" 7 .  Solve 9x "'" 4 (mod 1453) . 

8 . Solve 4x "" 9 (mod 1453) . 
'" 9. Solve for x and y :  

(a) x + 2y "" 3 (mod 7) , 3x + y "" 2 (mod 7) . 
(b) x + 2y "" 3 (mod 6) , 3x + y "'" 2 (mod 6) . 

10 .  Solve for x and y :  

(a) x + 2y "'" 3 (mod 9), 3x + Y "" 2 (mod 9). 
(b) x + 2y "" 3 (mod 10) ,  3x + Y "" 2 (mod 1 0).  

" 1 1 .  When the marchers in the annual Mathematics Department Parade lined up 
4 abreast, there was 1 odd person; when they tried 5 in a line, there. were 2 
left over; and when 7 abreast, there were 3 left over. How large is the 
Department? 

12 .  Find a multiple of 7 that leaves the remainder 1 when divided by 2, 3 ,  4, 5, 
or 6.  

" 13 .  Find the smallest odd n, n > 3, such that 3 1 11 ,  5 1 n  + 2 ,  and 7 1 11  + 4. 

14. Find the smallest integer 11 ,  n > 2 ,  such that 2 1 n, 3 1 11 + 1 , 4 1 n + 2 ,  51 n + 3 ,  
and 6 1 n  +-4. 

*t 15. Find a positive integer such that half of it is a square, a third of it is a cube, 
and a fifth of it is a fifth power. 

16. The three consecutive integers 48, 49, and 50 each have a square factor. 

(a) Find n such that 32 1 n, 42 1 n + 1 ,  and 52 1 11 + 2 .  
(b) Can you find 11 such that 22 1 11 ,  32 1 1! + 1 ,  and 42 1 n + 2 ?  

17 .  I f x  "'" r (mod m )  and x ""  s (mod m + . 1 ) ,  show that 

x "" rem + 1) - sm (mod m(m + 1 » . 

18 .  What three positive integers, upon being multiplied by 3, 5, and 7 re­
spectively and the products divided by 20 , have remainders in arithmetic 
progression with common difference 1 and quotients equal to remainders? 

*t 19 .  Suppose that the moduli in the system 

x '"  aj (mod mj), i = 1 ,  2,  . . .  , k 

are not relatively prime in pairs . Find a condition that the a i must satisfy in 
order that the system have a solution. 

20. How many mUltiples of b are there in the sequence 

a, 2a, 3a, . . . , ba ? 



Section 

6 
Fermat's and Wilson's Theorems 

In this section we will prove 

Theorem 1. Fermat's Theorem. If p is prime and (a , p) = 1 ,  then 

a P - I  ... 1 (mod p) 

This theorem was first stated , without proof, by Fermat in 1640. 

Fermat was a French lawyer and judge who did mathematics in his 

spare time and for the fun of it. Besides his large contributions to 
number theory, he was, with Pascal , responsible for the beginnings of 
probability theory. He was the most remarkable amateur in the history 
of mathematics ,  both in the original meaning of "lover of" and in the 

present-day meaning of "nonprofessional, "  and I think that he had the 
best  mathematical mind of the seventeenth century, after Newton's .  

His theorem is vital, as we shall see i n  the study of quadratic congru­

ences, and it has many other applications. Its statement and proof are 
. simple, but its effects are great. We will also prove 

Theorem 2 .  Wilson's Theorem. p is a prime if and only if 
(p - 1 ) !  *' - 1  (mod p) .  

42 
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Recall that n! = n(n - l )(n - 2) . . .  3 x 2 x 1 for n � · 1 and o! = 1 ,  
by definition. Factori als grow rapidly ; 2 !  is only 2 and 3 !  = 6, but 15 !  is 

already 1307674368000. Wilson's Theorem is not really Wilson's.  He 

only guessed that it was true and told the mathematician Waring about 
it. Waring was unable to prove it either, but he published it without 
proof in 1770. It was almost immediately proved by Lagrange,  one of 

the most powe:rful of eighteenth-century mathematicians . Wilson was 
not even the first to guess the theorem: Leibniz also noted it in 1 682, 
perhaps while resting from develop ing calculus. However, Wilson's 
name is inextricably wedded to the theorem, and through it  he has 

achieved mathematical immortality . 
Wilson's Theorem is remarkable because it gives a condition both 

necessary and sufficient for a number to be pri me .  Thus, in theory , the 

problem of determining whether a given number is prime is completely 
solved . But for large integers, the computational difficulties are great. 
For the moderate-sized prime 

p = 162 ,259,276,829,213 ,363 ,391 ,578 ,010,288 , 127, 

the calculation of the least residue of (p - I ) !  (mod p )  would take about 
1 ()33 multiplications of two 33-digit numbers, each followed by division 

by p .  Even our fastest compu ters are not fast enough. Compare, for 
example , the calculation of 12 !  (mod 13) with the labor in verifying that 
13  is divisible by neither 2 nor 3 .  

To see that Fermat's Theorem is true in a special case , take p = 7. 
Successive multiplication gives (mod 7) , 

a a 2 a3 a4 a5 as 

1 1 1 1 1 1 
2 4 1 2 4 1 
3 2 - 6 4 5 1 
4 2 1 4 2 1 
5 4 6 2 3 1 
6 1 6 1 6 1 

so a6 "'" 1 (mod 7) for all a such that (a, 7) = 1 .  Wilson' s  Theorem is also 
true for small values of n :  

12 2 3 4  5 6 7 8 9 10  1 1  
(n - 1 ) 1  1 2 6 24 1 20 720 5040 40320 362880 3628800 

(n - I) !  (mod n) 1 2 2  4 ° 6 0 ° ° 10 
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Note that both Fermat's and Wilson's Theorems are true when p = 2.  
As always, p denotes a prime, but ill the rest of this section we will 
assume that p is an odd prime. That 2 is a prime is sometimes exas­
perating, but nothing can be done about it. 

We start the proof of Fermat' s Theorem with 

Lemma 1. If (a, m) = I ,  then the least residues of 

(1)  a, 2a, 3a, . . . , (m - l )a (mod m), 

are 

(2) 1 ,  2, 3 ,  . . . , m - 1 

in some order. 
Stated differently, if (a, m ) = 1 ,  then each integer is congruent (mod 

m ) to exactly one of a ,  2a, . . . , (m - l)a . For example, take m = 8 
and a = 3: the numbers in ( 1 )  are then 

3 , 6 , 9 , 12 ,  15 ,  18, 2 1 ,  

and their least residues (mod 8) are 

3 , 6 ,  1 , 4 ,  7 ,  2, 5 .  

Proof. There are m - 1 numbers in ( 1 ) ,  none congruent to 0 (mod m ) . 
Hence each of them is congruent (mod m ) to one of the numbers in (2) . 
If we show that no two of the integers in (1)  are congruent (mod m) ,  
then it follows that their least residues (mod m ) are all different, and 
hence are a permutation of 1 ,  2 ,  . . . , m - 1 .  Suppose that two of the 
integers in ( 1 )  are congruent (mod m ) :  that is, 

ra "'" sa (mod m ) ;  

because (a , m) = 1 we can cancel (Theorem 4 of Section 4) and get 

r ""  s (mod m ) .  

But r and s are least residues modulo m ;  by an argument we have used 
several times before, it follows that r = s .  This proves the lemma. 

Proof of Fermat's Theorem.  Given any prime p, Lemma 1 says that if (a , 
p )  = 1 ,  then the least residues of 

a, 2a, . . . , (p - l)a (mod p)  
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are a permutation of 

1 , 2 ,  . . .  , p - l . 

Hence their products are congruent (mod p ) :  

a . 2a . 3a . . .  (p - 1 )a ... 1 · 2 · 3  . . . (p - 1 )  (mod p) , 

or 
aP-1 (p - 1) ! "" (p - 1) ! (mod p ) .  

Since p and (p - 1 ) 1  are relatively prime, the last congruence gives 

a1H ... 1 (mod p ), 

which is Fermat's Theorem. 

Exercise 1. Verify that the theorem is true for a = 2 and p = 5. 

Fermat's Theorem is sometimes stated in a slightly different way: 

Corollary. If p is a prime, then 

aP "'" a (mod p )  

for all a . 

Proof. If (a, p )  = 1 ,  this follows from Fermat' s  Theorem. If (a, p )  = p, 
then the corollary says 0 "'" 0 (mod p ) ,  which is true. There are no other 
cases. 

As an example, let us verify that 316 "", 1 (mod 17). It is not necessary 
to calculate the large integer 316 and then divide it by 17 ;  we can 
proceed in stages, reducing modulo 17  as we go. We have 

33 "", 27 ... 10 (mod 17) . 

Squaring, we get 

36 "" 1 00 "", -2 (mod 17) ; 

squaring again yields 312 ;;;;; 4 (mod 17) .  Thus 

316 � 312 • 33 • 3 ".. 4 . 10 · 3 "" 1 20 .... 1 (mod 17). 
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Exercise 2. Calculate 22 and 2010 (mod 1 1) .  

To prove Wilson's Theorem, w e  need two lemmas: 

Lemma 2. x2 "" 1 (mod p )  has exactly two solutions: 1 and p - 1 .  

Proof. Let r b e  any solution ofx2 "'" 1 (modp ) .  B y  solution we mean, as 
we did for linear congruences, a least residue that satisfies the congru­
ence. We have r2 - 1 "'"  0 (mod p) ,  so 

p i (r + l)(r - 1) .  
Hence p I (r + 1 )  or p i (r - 1 ); otherwise expressed, 

r + l "" O  or r - l = O (mod p ) ,  

so r "" p - 1 or 1 (mod p) . Since r is a least residue (mod p ) ,  it follows 
that r = p - 1 or 1 .  It is easy to verify that both of these numbers 
actually satisfy x2 ... 1 (mod p) .  

Lemma 2 has a familiar analogy: x2  = 1 i s  satisfied only whenx = 1 or 
x = - 1 ,  and x2 =" 1 (mod p) is satisfied only when x "" 1 (mod p) or 
x "'"  - 1  (mod p).  

If (a , p )  = 1 ,  we know that ax "" 1 (mod p) has exactly one sohltion. 
Let us denote it by a ' ;  it is for congruence what the reciprocal is for 
equality, since aa I - 1 (mod p) . For example, if p = 13 we have 

a l 1 2 3 4 5  
a '  1 7 9 10  8 

6 7 8 9 10 
1 1  2 5 3 4 

1 1  12 
6 12  

Note that there no duplications in  the second line. This is  no accident , 
and it is true in general; this is the content of the next lemma. 

Lemma 3. Let p be an odd prime and let a I be the solution of ax ... 1 
(mod p) , a  = 1 , 2 ,  . . . , p  - l . a ' - b '  (modp) if and only ifa  "" b (mod 
p) .  Furthermore, a ."" a I (mod p) if and only if a = 1 or p - 1 .  

Proof. Suppose that a '  "" b '  (mod p) . Then 

b == aa 'b "'" ab 'b - a (mod p).  
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Conversely , suppose that a - b (mod p).  Then 

b '  "'" b 'aa ' � b 'ba ' 3! a '  (mod p).  

For the second part of the proof, it  follows from 1 ·  1 - (p - 1 )  

(p - 1) "" 1 (mOO p )  that I '  '= 1 (mod p )  and (p - 1 ) ' "'" p - 1 (mod p) .  
Conversely, i f  a "'" a' (mod p ) ,  then 1 ""  aa ' ""' a2 (mod p ) , and from 

Lemma 2 we know that this is possible only if a = 1 or p - 1 .  

Proof of Wilson's Theorem. From Lemma 3 ,  we know that we can sepa­
rate the numbers 

2 ,  3 ,  . . .  , p  - 2 

into (p - 3)12 pairs such that each pair consists of an integer a and its 
associated a ' , which is different from a . For example, for p = 13 the 
pairs 

(2 , 7) ,  (3 , 9), (4, 1 0), (5, 8) , (6, 1 1) .  

,. Exercise 3 .  What are the pairs when p = I I ? 

The product of the two integers in each pair is congruent to 1 (mod 
p) ,  so it follows that 

2 · 3  . . .  (p - 2) "'" 1 (mod p).  

Hence 

(p - 1 ) !  � 1 . 2 . 3 . . . (p - 2)(p - 1) � 1 . 1 . (p - 1) "'" - 1  (mod p) , 

and we have proved half of the theorem. It remains to prove the other 

half and show that if 

(3) (n - 1 ) 1 "" - 1  (moo n), 

then n is  a prime. Suppose that n = ab for some integers a and b, with 
a 1= 11 . From (3) ,  we have 

-{ 11 I (n - 1) 1 + 1 ,  

and since a I n ,  we have 

(4) a I (11 - 1) 1 + 1 .  

But since a :::; 11 - 1 , it follows that one of the factors of (n - 1 ) 1  is a 

itself. Thus 
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(5) a I Cn - l) ! .  

But (4) and (5) imply that a 1 1 . Hence the only positive divisors of n are 
1 and n ,  and thus n is a prime. 

Problems 

* 1 .  What is the least residue of 

56 (mod 7) 5$ (mod 7) 1945fl (mod 7)? 

2.  What is the least residue of 

P (mod 1 1) 5 12 (mod 1 1) 194512 (mod I I)? 

"" 3. What is the last digit of 7355? 

4.  What are the last two digits of 735�? 
* 5. What is the remainder when 3 1 4162 is divided by 163? 

6 .  What is the remainder when 3 1 4'62 is divided by 7? 
'" 7 .  What is the remainder when 314'0' is divided by 165? (Watch out-l65 is 

not pri me!) 

8 .  What is the remainder when 200 12001 is divided by 26? 

9. Show that 

(p - 1) (p - 2) ' . .  (p - r) "'" ( - l)'r !(mod p) ,  

for r = 1 ,  2 ,  . . . , p  - 1 .  

10 .  (a) Calculate (11 - I ) !  (mod n) for n = 10 ,  12 ,  14, and 15 .  
(b) Guess a theorem and prove it. 

t 1 1 .  Show that 2(p - 3 ) !  + 1 ""  0 (mod p) .  

12. In 1732 Euler wrote: "I  derived [certain] results from the elegant theorem, 
of whose truth I am certain , although I have no proof: a " - b" is divisible 
by the prime n + 1 if neither a nor b is ."  Prove this theorem, using 
Fermat' s Theorem. 

13. Note that 
6! "" - I  (mod 7) ,  

5! 1 !  "" 1 (mod 7), 

4!2! "" - 1  (mod 7) , 

3 ! 3 !  "" 1 (mod 7). 

Try the same sort of calculation (mod 1 1) .  

14. Guess a theorem from the data o f  Problem 1 3 ,  and prove it. 

t iS .  Suppose that p is an odd prime. 
(a) Show that 
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1" -1 + 2"-1 + . . . + (p - 1)"-1 "" - 1  (mod p).  

(b) Show that 

1" + 2" + . . .  + (p - 1 )" '" 0 (mod p) .  

16. Show that the converse of  Fermat ' s  Theorem is false. [Broad hint: consider 
2340 (mod 341) . ]  

t 17.  Show that for any two different primes p. q. 

(a) pq 
I 
(a ,, + 0  - a lH1 - a 0+1 + (2) for all a .  

(b) pq (a"· - a P - a ' + a )  for all a .  
1 8 .  Show that if p i s  an odd prime, then 2p \ (22,,- 1 - 2). 

"t 19 .  For what n is it  true that 

p \ ( l + n + n 2 + . . . + n'H)?  

20. Show that every odd prime except 5 divides some number o f  the form 
I I I  . . . 1 1  (k digits, all ones) . 



Section 

7 
The Divisors of an Integer 

It would be natural now to continue studying congruences by taking up 

quadratic congruences, but partly for the sake of variety we will take 

up a different subject and return to congruences later. 
Let n be a positive integer .  Let d (n) denote the number of positive 

divisors of n (including 1 and n) , and let If(n), denote the sum of the 
positive divisors of n. That is, 

d(n) = L 1 and If(n) = L d. 
din d in  

L means the sum over the positive divisors of n .  For example, 
din 

2: h(d) = h( 1) + h (2) + h(3) + h(4) + h (6) + h( 12) 
d l 12 

and 

2: d2 = 1 + 4 + 25 + 100. 
dllO 

These functions occur frequently , and in this section we will derive 

some of their properties .  In the next section we will use them to 
study perfect, abundant, and other kinds of numbers first considered 
by the ancient Greek mathematicians and still of interest today. 

,. Exercise 1 .  Verify that the following table is correct as far as it goes ,  
and complete it. 

50 
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n \ 1 2 3 4 5 6 7 8 9  
d0) 1 2 2 3 2 4 2 4 3 

1 0  
4 

1 1  12  13  14 15  16 

If p is a prime, then d(p)  = 2, because the only positive divisors of 
p are 1 and p .  Since p2  has divisors 1 ,  p ,  and p2,  then d(P2) = 3 .  

* Exercise 2 .  What i s  d(p3)? Generalize to d(p"), n = 4 ,  5 ,  . . . .  

If p *  q ,  then pq has divisors 1 ,  p, q, and pq, so d(pq) = 4.  (In 
this section, as elsewhere, p and q will stand for primes.)  Similarly, 
the divisors of p2q are l , p, p2, q, pq, and p2q, so d(p2q) = 6. 

' "  Exercise 3. What is d(p3q)? What is d(p"q) for any positive n ?  

After Exercises 2 and 3 ,  you may have guessed 

Theorem 1. If p lelp�e2 . . .  Pkek is the prime-power decomposition of 11 ,  
then 

Proof. Let D denote the set of numbers 

( 1 )  
We claim that D is exactly the set of divisors of 11 .  First, we note 
that every number in the set is a divisor of n ,  because we can find 
for each number in ( 1 )  an integer whose product with the number is 
11 ;  namely, 

Second, suppose that d is a divisor of n .  If p 1 d,  then p i n ,  so each. 
prime in the prime-power decomposition of d must appear in the 
prime-power decomposition of n .  Thus 

where some )(or all) of the exponents may be O. Moreover, no 
exponent !; is larger than ei•  (If it were, we would have a situation 
in which p{' j d and d i n ,  which implies pf; ln .  This is impossible if 
fi > e; .) Thus every divisor of n is a member of the set D .  Thus D is 
identical with the set of divisors of n .  Each fi in ( 1 )  may take on 
ei + 1 values. Thus there are 
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numbers in D ,  and because of the unique factorization theorem, they 
are all different. Since d(p1t) = n +, I ,  this proves the theorem. For 
example, from 24 = 23 • 3 we get d(24) = d(23)d(3) = 4 . 2 = 8 . 

., Exercise 4. Calculate d(240) . 

Now we will get a formula for a-(n). 

" Exercise 5. Verify that the following table is correct as far as it  goes, 
and complete it. 

n i l 2 3 4 5 6 7 8 9 10 1 1  12 13 14 
a-(n) 1 3 4 7 6 12 8 15 

As with den) ,  some special cases are easy. ' For example, a-(p) = 
p + 1 for all primes p .  Furthermore, the divisors of p2 are 1 ,  p ,  and 
pi, so a-(p2) = 1 + P + p2. 

" Exercise 6. What is a-(P3)? a-(pq), where p and q are different primes? 

Exercise 7. Show that a-(2") = 21tH - 1 .  

" Exercise· 8 .  What i s  a-(p") , n = 1 ,- 2, . ? 

Let us calculate a-(peqf) , where p and q are different primes, and 
see if it suggests a general result. The divisors of p€qf are 

qf 

p 
pq 
pq2 

pqf 

If we add across each row, we get 

peqf. 

a-(peqf) = ( 1  + P + . . .  + pe) + q(1 + P + . . . + pe) 
+ q2(1 + P + . . .  + pe) + . . .  
+ qf( l  + P + . . . + p€) 

= (1  + q + . . .  + qf)(1 + P + . . .  + pe) = a-(qf)O'(pe) . 

What is true for the product of two prime powers is true in general: 
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Theorem 2. If Ple'P2e, • . .  Pke• is the prime-power decomposition of n ,  

then 

Proof. We will use mathematical induction. The theorem is true for 
k = 1 and, as we have just seen, for k = 2.  Suppose that it is true 
for k = r .  We will show that this implies that it is true for k = r + 1 .  Let 

To simplify the notation, let us  write n = Np'. Let 1 ,  d1 , , dt 
be the divisors of N. Since (N, p) = 1 ,  all of the divisors of n are 

P 

Summing, we get 

cr(n) = ( 1  + d1 + d2 + . . .  + dt)(1 + P + . . . + pe) 
= cr(N)cr(pe). 

But from the induction assumption, 

cr(N) = cr(Ple ')cr(p2e,) .. . cr(Pke,), 

and the last two equations complete the proof. 

For example , from 24 = 23 . 3 we get 

cr(24) = cr(23)cr(3) = ( 1  + 2 + 4 + 8)(1 + 3) = 60 . 

.. Exercise 9. Calculate cr(240) . 

Both d and cr are members of an important class of number-theoretic 
functions: the multiplicative functions .  We will now define this term, 

verify that d and cr are multiplicative functions ,  and explain why the 

idea is important. A function f, defined for the positive integers, is 
said to be multiplicative if and only if 

(m, n) = 1 implies f(mn) = f(m)f(n). � 
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A simple example of a multiplicative function is given by fen) = n .  
Another i s  g,  where g(n ) is the product of the prime divisors of n .  

Theorem 3 .  d is multiplicative. 

Proof. Let m and n be relatively prime. Then, no prime that divides 
m can divide n, and vice versa. Thus if 

and 

are the prime-power decompositions of m and n ,  then no q is a P 
and no p is a q ,  and the prime-power decomposition of mn is given by 

Applying Theorem 1 ,  we have 

d(mn) = d(P le,)d(P.:/,) . . . d(P,/k)d(q/,)d(ql') . . .  d(q/) 
= d(P ,€'P2e, . . . Pke,)d(q/'q/' . . .  q/) = d(m)d(n). 

Theorem 4. a is multiplicative . 

Proof. The proof is exactly the same as the proof of Theorem 3 ,  
with d replaced by a and "Theorem 1"  by "Theorem 2." 

The reason multiplicative functions are important is that if  we know 
the value of a multiplicative function f for all prime-powers, then we 
can find the value off for all positive integers . To see this,  we note 

Theorem 5. If f is a multiplicative function and the prime-power 
decomposition of n is p,ep2e, . . .  Pke" then 

Proof. The proof is by induction on k .  The theorem is trivially true 
for k = 1 .  Suppose it is true for k = r .  Because 

we have, from the definition of a multiplicative function , 

f((p,e'P2e, . . . P/")P r+/"H ) = f(Ple'P2e, . . .  p/")f(Pr+le" , ) .  
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From the induction assumption, the first factor is 

f(P{,pze, . . . p/') = f(Ple')f(P2e,) . . . f(P/'), 

and this, together with the preceding equation, completes the induction. 

For an example, suppose thatf(Pe) = ep"-l for all primes p and all e ,  

e 2: 1 .  The first few values off are 

n 
I 

2 3 4 5 6 7 8 9 10 1 1  12 

f(n) 1 1 4� 1 1 1 1 2  6 1 4 

f(3 141 )  = f(32 • 349) = f(32)f(349) = 6 · 1 = 6, 

and we can calculate fln) for any n in a similar manner. 

*" Exercise 10. Compute f(n) for n = 1 3 ,  14 ,  � . . , 24 .  

We will apply Theorem 5 of this section in Section 9 to get a 
formula for an important number-theoretic function, Euler's  <t>-function. 

Problems 

" 1 .  Calculate d (42), 0-(42) , d (420), and 0-(420) . 
2. Calculate d(540), 0-(540) , d (5400) , and 0-(5400) . 

* 3 .  Calculate d and 0- of 101 15  = 5 . 7 · 172 and 100 1 1 5  = 5 . 20023. 
4. Calculate d and 0- of 101 1 6  = 22 . 32 • 281  and 100 1 16 = 22 . 35 • 1 03 . 
5. Show that o-(n) is odd if n is a power of two. 

6. Prove that if f(l1) is multiplicative, then so is f(n)/l1 . 
" 7. What is the smallest integer 11 such that d (11) � 8? Such that d (n) = 1O? 

8. Does d(l1) = k have a solution 11 for each k ?  
*" 9. In 1644, Mersenne asked for a number with 60 divisors . Find one smaOer 

than 10,000. 
10. Find infinitely many n such that d(n) = 60. 

,. 1 1 .  If p is an odd prime, for which k is 1 + p + . . .  + p k  odd? 

12 .  For which 11 is o-(n) odd? 

13 .  If 11 is a square, show that d (l1) is odd. 

14 .  If d(l1) is odd, show that n is a square. 

t 15. Observe that 1 + 113 = 413 ; 1 .+  112 + 114 = 7/4; 1 + 1/5 = 6/5; 1 + 1/2 + 
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1/3 + 1/6 = 1 5/6; 1 + In = 817; and 1 + 112 + 114 + 118 = 15/8. Guess and 
prove a theorem. 

16 .  Find infinitely many n such that (T(n) :S (T(n - 1). 
*t 17.  If N is odd, how many solutions does x2 - y2 = N have? 

18 .  Develop a formula for (T2(n) ,  the sum of the squares of the positive divisors 
of n .  

t 19. Guess a formula for 

where k is a positive integer. 

20. Show that the product of the positive divisors of n is n<f(JI)/2. 
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8 
Perfect Numbers 

Numbers are fascinating. At least, they have always fascinated some 
people, from the time of the start of mat.hematics as a deductive art 
some 2600 years ago until today. The ancient Greek mathematicians 
mixed number theory with mysticism, and numbers could be male or 
female, square or triangular, abundant or deficient, and they took on 
nonnumerical properties .  For example, 5 was the number of marriage 
because it was the sum of the smallest male and female numbers 
greater than 1 :  5 = 2 + 3 .  Number mysticism has never disappeared, 
and though today it takes forms different from the past, it is still with 
us, flourishing for the same reasons as astrology. 

A number is called perfect if and only if it is equal to the sum of its 
positive divisors, excluding itself. For example, 6 is perfect, because 
6 = 1 + 2 + 3 .  So is 28 perfect, because 28 = 1 + 2 + 4 + 7 + 14. Bilt 18 
is not perfect, because the sum of its positive divisors, excluding itself, 
is 1 + 2 + 3 + 6 + 9 = 2 1 .  We study perfect numbers not for mystical 
reasons, but because they provide practice with the o--function and 
because Euler proved a satisfying theorem that allows us to determine 
all even perfect numbers . Long before Euler, Euclid found some per­
fect numbers; we will follow in his footsteps.  

In symbols, the sum of the positive divisors of n, excluding itself, is 

57 
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a(n) - n .  Hence a number is perfect if and only if a(n) = 2n . To find 
solutions to this equation, we will need to use a result proved in Section 
7-namely, that a is a multiplicative function, or 

( 1 )  if (m , n) = 1 ,  then a(mn) = a(m)<T(n). 

With its aid, we can prove 

Theorem 1 (Euclid). If 2'" - 1 is prime, then 2"'-1(2'" - 1) is perfect. 

Proof. Let n = 2k-1(2'" - 1 ) .  Because 2'" - 1 is prime, we know that 
a(2le - 1) = 2"'. Then, noting that 2"'-1 and 2'" - 1 are relatively prime 
and applying ( 1 ) ,  we have 

a(n) = a(2"'-1(2'" - 1» = a(2"'-I)<T(2k - 1) = (2k - 1) . 2'" = 2n . 

Thus n is perfect. 

So, every time we find a k  such that 2'" - 1 is prime, we can construct 
a perfect number. We do not have to look at all values of k ,  because if k 
is composite, so is 2'" - 1 :  if k = ab , then 

2'" - 1 = 2ab - 1 = (2a - 1)(2a(b-ll + 2a(0-2) + . . . + 1 ) .  

Thus 2'" - 1 can be  prime only when k i s  prime. Replacing k with p ,  the 
first few such numbers are 

p / 2 3 5 7 1 1 13 
2P - 1 3 7 3 1  127 2047 8191 

an d  all of these except 2047 = 23 . 89 are prime. Thus we have five 
perfect numbers: 

2(22 - 1) = 6, 
22(23 - 1 )  = 28 , 
24(25 - 1 )  = 496, 
26(27 - 1 )  = 8 128, 

212(213 - 1) = 33550336. 

An example of a larger perfect number is 

191561942608236107294793378084303638130993721548 169216. 

Now we will show that the numbers 2P-1(2P - 1) with p and 2P - 1 
prime are the only even perfect numbers . 
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Theorem 2 (Euler) . If n is an even perfect number, then 

n = 2P-l(2P - 1) 

for some prime P, and 21' - 1 is also prime. 

Proof. If n is an even perfect number, then n = 2em , where m is odd and 
e ;:::: 1 .  Since (F(m) > m ,  we can write (F(m) = m + s ,  with s > o. Then 
2n = (F(n) becomes 

2e+lm = (2<'+1 - l )(m + s) = 2Hlm - m + (2e+l - 1)s . 

Thus 

(2) m = (2Hl - 1)s , 

which says that s is a divisor of m and s < m . But (F(m)  = m + s ;  thus s is 
the sum of all the divisors of m that are l�ss than m .  That is, s is the sum 
of a group of numbers that includes s .  This is possible only if the group 
consists of one number alone. Therefore, the set of divisors of m 
smaller than m must contain only one element, and that element must 
be 1 .  That is, s = 1 ,  and hence m = 2e+l - 1 is a prime. 

We repeat the argument, because it is slippery. Let the divisors of m 
be 

Then (F(m) = m + s ,  or 

s = 1 + d2 + ds + . . .  + d/<. 

But s  is a divisor ofm and s < m ,  sO s equals one of 1 ,  d2 , • • •  , d/<. The 
only way that can be possible is if s = 1 .  

We have shown that s = 1 .  Thus (F(m) = m + s = m + 1 .  This says 
that m is prime. From (2) ,  m = 2e+l - 1 .  The only numbers of this form 
that can be prime are those with e + 1 prime . Hence m = 2P - 1 for 
some prime p , and this completes the proof. 

Thus the even perfect numbers determined in Theorem 1 are the only 
even perfect numbers. As for odd perfect numbers, no one knows if 
there are any, and no one has proved that none can exist. It is known 
that if there is an odd perfect number, then it is quite large: it must be 
greater than 1038, and it must satisfy many other conditions.  For exam­
ple, ifpl ' Pz, . . .  , P/< are the prime factors of an odd perfect number, 
then lIpl + lIp2 + . . .  + lIpk > ( 150/15 1) l n  2. But no combination of 
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conditions has so far served to show that there are no odd perfect 
numbers: it may be that there is one, but so huge that it is out of the 
range of human computation. 

The problem of finding even perfect numbers is, after Theorem 2, the 
same as the problem of determiIiing primes p such that 21' - 1 is also 
prime. Primes of the form 21' - 1 are called Mersenne primes . In the 
seventeenth century, Mersenne, a lover of mathematics, claimed that 
21' - 1 was prime for 

k = 2 , 3 , 5 , 7 , 1 3 ,  17 , 3 1 , 67 , 127, 257 , 

and for no other primes less than 257. His guess was not accurate: he 
erred in including 67 and 257, for 

267 - 1 = 19370772 1 ' 761838257287, 

and 2257 - 1 is also composite . He further erred in excluding 19, 61 , 89, 
and 107 .  But let us not think harshly of Mersenne: in the seventeenth 
century, there were no mathematical journals to announce new dis­
coveries; instead, almost everyone wrote to Mersenne, and Mersenne 
wrote to almost everyone else, enclosing the latest mathematical news . 
He thus spread the results of Fermat, for one, and sped the develop­
ment of mathematics ;  it is fitting that he have a set of primes named 
after him. The complete list of currently known primes p such that 
21' - 1 is prime is 

2 , 3 , 5 , 7, 13 , 17,  19, 3 1 , 6 1 , 89, 107,  127, 521 , 607, 1279, 

2203 , 228 1 , 3217, 4253, 4423 , 9689, 994 1 ,  1 1213 ,  1 9937, 

and to each of these there corresponds an even perfect number: 24 in 
all. The first twelve were discovered before the invention of high-speed 
computers ; the later ones are so enormous as to be beyond the reach of 
hand computation. The search for Mersenne primes has gone on (the 
last one was announced in 1971 ) ,  in the hope of seeing some sort of 
pattern in the primes p ,  so that theorems could be guessed and maybe 
proved. Some conjectures have been advanced, but without any indica­
tion as to how to go about proving them, and no important theorems 
have been proved. It is not even known if there are infinitely many such 
primes. 

To close the section, we will mention another kind of number that 
arose from number mysticism: amicable numbers . Consider 220 and 
284. Since 220 = 25 . 5 . 1 1 ,  it follows that 
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0"(220) - 220 = 0"(22)0"(5)0"(1 1 )  - 220 = 7 . 6 ·  12  - 220 

= 504 - 220 = 284. 

And since 284 = 22 . 71 , we have 

0"(284) - 284 = 0"(22)0"(71) - 284 = 7 . 72 - 284 

= 504 - 284 = 220. 

So, in some sense, 220 and 284 go together. In general , we say that m 
and n are amicable (or are an amicable pair) if and only if 

O"(m) - I'll = n and O"(n) - n = m . 

Equivalently, we could say that m and n are amicable if and only if 

0"(1'11 ) = O"(n) = m + n .  

Exercise 1 .  Verify that 1 184 and 1210 are amicable .  

Number mystics think that if one person carries a talisman of some 

sort containing the number 220, and another person has one with 284, 
they will be favorably disposed to each other. Numbers undeniably 

have power: it might be worth a try. The amicable pair in Exercise 1 
was first discovered as late as 1866 , Euler found many such pairs , and 
long lists of them exist .  Besides those already mentioned , the amicable 
pairs less than 10 ,000 are 2620, 2924; 5020, 5564; and 6232, 6368 . There 

are as yet no general theorems on amicable numbers as beautiful as 
Euclid's and Euler's theorems on perfect numbers. Perhaps they re­
main to be discovered . 

In the problems, abundant, deficient, and triangular numbers appear. 
An integer n is abundant if and only if O"(n ) - n > n ,  and it is deficient if 
and only if O"(n) - n < n . Triangular numbers have the form n (n + 1)/2. 

Problems 

1 .  Verify that 2620, 2924 and 17296, 1 84 1 6  are amicable pairs . (The latter pair, 
discovered by Fermat, was the second pair found. Note that 
17296 = 24 . 23 · 47 and 1841 6  = 2< . 1 15 1 .) 

2. It was long thought that even perfect numbers ended alternately in 6 and 8. 
Show that this is wrong by verifying that the perfect numbers correspond­
ing to the primes 213 - 1 and 217 - 1 both end in 6. 

" 3. Classify the integers 2,  3 , . . .  , 21 as abundant, deficient, or perfect. 
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4. Classify the integers 402, 403 , . . . ,  421 as abundant, deficient, or perfect. 

5. If fT(n)  = kn , then n is called a k-perfect number . Verify that 672 is 3-perfect 
and 2, 178,540 = 22 . 32 . 5 . 72 • 1 3  . 19 is 4-perfect. 

6. Show that no number of the form 2"3b is 3-perfect. 

7. Let us say that n is superperfect if and only if fT(fT(n» = 2n .  Show that if 
n = 2k and 2k+1 - 1 is prime, then n is superperfect. 

8. It was long thought that every abundant number was even. Show that 945 is 
abundant, and find another abundant number of the form 3a • 5 ·  7. 

9. In 1575, it was observed that every even perfect number is a triangular 
number. Show that this is so. 

10. In 1652, it was observed that 

Can this go on? 

I I .  Let 

6 = 1 + 2 + 3 ,  
28 = 1 + 2 + 3 + 4 + .') + 6 + 7 ,  

496 = 1 + 2 + 3 + . . . + 3 1 .  

p = 3 · 2· - 1 , 
q = 3 . 2<-1 - 1 ,  
r = 3 '  . 2  •• - 1  - 1 ,  

where e is a positive integer. If p .  q .  and r are all prime, show that 
2"pq and 2er are amicable. (Only for e = 2, 4, 7 are p. q. and r all 
prime for e :s; 200.) 

12. Show that if p > 3 and 2p + 1 is prime, then 2p (2p + 1)  is deficient. 

13 .  Show that all even perfect numbers end in 6 or 8.  

14. If 11 is an even perfect number and n > 6,  show that the sum of its digits is 
congruent to 1 (mod 9). 

15.  lf p is odd, show that 2P-I(2P  - 1) "" 1 + 9p (p - 1)/2 (mod 81 ) .  
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9 
Euler's Theorem and Function 

Fermat's Theorem states that if p is prime , then 

(a , p) = 1 implies a P-1 ... 1 (mod p). 

It is natural to ask if there is a generalization of this to any positive 
integer: Given any integer m ,  is there a number f(m) such that a 1(",) "" 1 
(mod m)? We note that this cannot hold unless (0 , m) = 1 ,  for if a and m 
have a common divisor greater than 1 ,  then m I (O k - 1) is impossible 
for any k > O. Let us look at tables of powers ofa (mod m),  where a and 
m are relatively prime, for m = 6, 9 ,  and 10: 

m = 6 m = 9 m = 10 

a a2 a a2 a3 a4 as a6 a a2 a3 

1 1 1 1 1 1 1 1 1 1 1 
5 1 2 4 8 7 5 1 3 9 7 

4 7 1 4 7 1 7 9 3 
5 7 8 4 2 1 9 1 9 
7 4 1 7 4 1 
8 1 8 1 8 1 

63 

a4 

1 
1 
1 
1 
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Evidently, 

a2 ... 1 (mod 6) 

a6 ... 1 (mod 9) 

a4 """ 1 (mod 10) 

if 

if 
if 

(a, 6) = 1 ,  

(a, 9) = 1 ,  

(a, 10) = 1 ,  

so the number f(m) exists for m = 6, 9 ,  and 10. 

Exercise 1 .  Show that a6 ... 1 (mod 14) for all a relatively prime to 14. 

If your eye is very sharp indeed, you might have noticed thatf(6) = 2 
and that there are two positive integers less than 6 and relatively prime 
to 6; f(9) = 6, and there are six positive integers less than 9 and rela­
tively prime to it; f(10) = 4, and there are four positive integers less 
than 10 and relatively prime to it; and a similar statement holds for 14. 

Let us introduce some notation. If m is a positive integer, let 4>(m)  
denote the number of positive integers less than or  equal to m and 
relatively prime to m .  We will call 4> Euler's cp-function . With this 
notation, 4>(6) = 2, 4>(9) = 6, and 4>( 10) = 4. If you worked more exam­
ples you would almost certainly guess that the following theorem, first 
proved by Euler, is true: 

Theorem 1. Suppose that m 2: 1 and (a , m) = 1 .  Then a�("') '" 1 (mod 
m).  

We know that the theorem is  true in the special case when m = p ,  a 
prime. Every positive integer less than p is relatively prime to it, so 
4>(P ) = p - 1 ,  and it is Fermat's  Theorem that a p- l "'" 1 (mod p)  when 
(a , p) = 1 .  The theorem is also true if m = 1 ,  since the definition of the 
4>-function gives 4>(1) = 1 .  

In this section we will prove Theorem 1 ,  -and we will develop a 
formula for calculating 4>(n) from the prime-power decomposition of n .  

The idea used to prove Fermat's Theorem is that if (a, p) = 1 ,  
then the least residues (mod p )  of a, 2a , . . . , (p - l)a are a per­
mutation of 1 ,  2, . . .  , p - 1. This is also the key to Euler' s gen­
eralization: 

Lemma 1 .  If (a, m) = 1 and r 1 ,  rz, . . . , r<b(m) are the positive integers 
less than m and relatively prime to m ,  then the least residues (mod m)  
of 
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are a permutation of 
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For example, if m = 10 and a = 3 ,  then the least residues of 

3 ' 1 , 3 · 3 , 3 ' 7 , 3 ' 9  

are 

3 ,  9, 1 ,  7 ,  

a permutation of { I ,  3 ,  7, 9} . 

Exercise 2. Verify that Lemma 1 is true if m = 14 and a = 5 .  

Proof of Lemma 1.  Since there are exactly qi(m )  numbers in  the set 0) ,  
to prove that their least residues are a permutation of the 1>(m)  numbers 
r1 > r'J. , • • •  , r$(m) we have to show that they are all different and that 
they are all relatively prime to m . To show that they are all different, 
suppose that 

ari "'" arj (mod m)  

for some i andj (1  ::; i ::; 1>(m) ,  1 ::; j ::; 1>(m» . Since (a, m) = 1 ,  we can 
cancel a from both sides of the congruence to get rj "'" rj (mod m ) .  Since 
rj and rj are least residues (mod m) ,  it follows that ri = rj. Hence, r; f= rj 

implies ar; ". arj (mod m) ,  and so the numbers in ( 1 )  are all different. 

To prove that all the numbers in ( 1) are relatively prime to m ,  
suppose that p is a prime common divisor of ar i and m for some i ,  
1 ::; i ::; 1>(m) .  Since p is prime, either p ia or p j r; . Thus either p is a 
common divisor of a and m or of ri and m .  But (a , m) = (r;, m )  = 1 ,  so 
both cases are impossible. Hence (ari ' m)  = 1 for each i , i  = 1 ,  2 , . . . , 
1>{m ). 

The proof of Euler's  Theorem proceeds as does the proof of 
Fermat's  Theorem: 

Proof of Theorem 1 .  From Lemma 1 we know that 

r1 r2 
• • •  r $(",) """ (ar 1 )(ar2) . . . (ar $(m» 

"'" a 4>(m)(r 1 rZ . . . r $(",» (mod m) .  
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Since each of r l ,  r2 ' . . . , 1"$(",,) is relatively prime to m ,  it follows that 
their product is, also; thus that factor may be canceled in the last 
congruence, and we get 

1 l!!!l a<4>(m) (mod m) .  

The rest of the section will be mainly devoted to the properties of 1jJ ;  
our goal is to find a way of calculating ljJ(n )  by some method other than 
actually counting all the positive integers less than n and relatively 
prime to it. 

Exercise 3. Verify that the entries in the following table are correct. 

n / 2 3 4 5 6 7 8 9  

ljJ(n )  1 2 2 4 2 6 4 6 

Exercise 4. Verify that 34>(8) ;;a 1 (mod 8). 

10 
4 

" Exercise 5. Which positive integers are less than 4 and relatively prime 
to it? What is the answer if 4 is replaced by 8? By 16? Can you induce a 
formula for 1jJ(2"),  n = 1 , 2 ,  . . .  ? 

In general , it is not hard to see what ljJ(p" )  is, wherep is a prime and n 
is a positive integer. 

Lemma 2. ljJ(p")  = p "- l (p - 1) for all positive integers n .  

Proof. The positive integers less than or equal to p "  which are not 
relatively prime to p " are exactly the mUltiples of p :  

1 ·  p ,  2 ·  p ,  3 ·  p ,  . • .  , (P "-l)p, 

and there are p"-l  of them. Since there are in all p "  positive integers less 
than or equal to p \  we have 

1jJ(p") = p" _ p 'H = p'H(P - 1) .  

For example, the positive integers less than or equal to 27 which are 
not relatively prime to 27 are 3 ,  6, 9 ,  12 ,  1 5 , 18 , 2 1, 24, and 27; nine of 
them, so cp(27) = 27 - 9 = 9(3 - 1) . 
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Exercise 6. Verify that the formula is correct for p = 5 and n = 2. 

Thus we know 4> for all prime-powers . If we knew that 4> was a 

multiplicative function , then we could apply Theorem 5 of Section 7 to 

get a formula for 4>(n). That 4> is in fact multiplicative we will now 

demonstrate in a theorem whose proof, in common with many other 

proofs in number theory, is neither long, technical, nor complicated; it 

is just hard. First we need an easy lemma: 

Lemma 3. If (a , m) = 1 and a E b (mod m),  then (b, m) = 1 .  

Proof. This follows from the fact that b =  a + km from some k .  

Corollary. If the least residues (mod m )  of 

(2) 

are a permutation of 0, 1 ,  . . .  , m - 1 ,  then (2) contains exactly 4>(m) 
elements relatively prime to m . 

We can now prove 

Theorem 2. 4> is multiplicative. 

Proof. Suppose that (m , n) = 1 and write the numbers from 1 to mn as 
follows: 

1 m + 1 2m + 1 
2 m + 2 2m + 2 

m 2m 3m 

(n - 1)m + 1 
(n - l)m + 2 

mn 

Suppose that (m, r) = d and d > 1 .  Then we claim that no element in the 
rth row of the array: 

r m + r 2m + r  . , .  km + r  . . .  (n - l)m + r  

is relatively prime to mn . This is so because if d i m  and d I r, then 
d I (km - r) for any k .  So, if we are looking for numbers that are rela� 
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tively prime to mn , we will not find any except in those rows whose first 
element is relatively prime to m . 

. 

'" Exercise 7. How many such rows are there? 

For an example, let us take n = 5 and m = 6. Then the array is 

1 7 13  19 25 

2 8 14 20 26 

3 9 15 21 27 

4 10 16 22 28 

5 1 1  17 23 29 

6 12 18  24 30 

No element in the second, third, fourth, or sixth row is relatively prime 
to mn = 30, because the first element in each of those rows is not 
relatively prime to m = 6. All numbers relatively prime to 30 are found 
in the two remaining rows , 

(3) 
1 7 13  19 25 

5 1 1  17  23 29 

Suppose we can show that there are exactly ¢(n) numbers relatively 
prime to mn in each of the rows that have first elements relatively 
prime to m .  Since there are ¢(m )  such rows, it will follow that the 
number of integers in the whole array that are relatively prime to mn is 
¢(n)¢(m) :  that is, ¢(mn) = ¢(m)¢(n) ,  and the theorem will be proved, 
But the numbers in the r th row (where r and m are relatively prime) are 

(4) r ,  m + r ,  2m + r, , . , . , (n - l)m + r ,  

and we claim that their least residues (mod n)  are a permutation of 

(5) 0, 1 ,  2, . .  , , (n - 1 ) .  

To verify this claim, all we have to do is  show that no two of the 
numbers in (4) are congruent (mod n) ,  because (4) contains n elements, 
just as (5) does. This is easy: suppose that 

km + r 1i!E jm + r  (mod n) ,  

with 0 :s; k < n and 0 :5  j < n .  Thenkm � jm (mod n) ,  and since (m ,n)  = 
1 ,  we have k � j  (mod n) ,  On account of the inequalities on k and j,  
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it follows that k = j. Hence, if k i=-j, then km + r ". jm + r (mod n) ,  and 
no two elements of (4) are congruent (mod n ) .  

In  the example above, the least residues (mod 5) of the numbers in 
(3) are 

1 2 3 4 0 

o 2 3 4  

and each row contains <1>(5) = 4 numbers relatively prime to 30. Thus 
8 = <1>(30) = <1>(6)<1>(5). 

By the Corollary to Lemma 3 ,  we have that (4) contains exactly <I>(n) 
elements relatively prime to n .  But from Lemma 3, every element in the 
rth row of the array is relatively prime to m .  It follows that the r th row 
of the array contains exactly <I>(n) elements relatively prime to mn . As 
we noted before, this is enough to complete the proof. 

We can now get a formula for <I>(n) :  

Theorem 3 .  If n has a prime-power decomposition given by 

then 

Proof· Because <I> is multiplicative,  Theorem 5 of Section 7 applies 
here to give 

<I>(n) = <I>(Ple')<I>(P2e,) . . . <I>(Pj(k). 

If we apply Lemma 2 to each term on the right, the theorem is proved . 

The best way to . calculate a value for <I> is to use this multiplicative 
property. For example, to find <1>(72), factor 72 into 23 • 32 and write 
<1>(72) = <1>(23)<1>(32) = 22 . 1 . 3l . 2 = 24. 

" Exercise 8. Calculate <1>(74), <1>(76) , and <1>(78). 

The formula of Theorem 3 can be written in another form, which is 
neater and sometimes useful , though not for computation: 
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The proof of this corollary is left to the reader. We conclude with 
a theorem we will need in the next section. 

" Exercise 9. Calculate L cp(d) 
d in 

(a) For n = 12,  13, 14, 15,  and 16. 
(b) For n = 2k, k :2: 1. 
(c) For n = pk

, k :2: 1 and p an odd prime. 

You should have guessed by now that the following theorem is true. 

Theorem 4 .  If n :2: 1 ,  then 

L cp(d) = n . din 

Proof. It would be natural to try to apply the formula of Theorem 3 ' 
to get this result. This would be difficult; instead we use a clever idea 
first thought of by Gauss . Consider the integers 1 ,  2, . . .  , n .  We 
will put one of these integers in class Cd if and only if its greatest 
common divisor with n is d. For example, if n = 12, we have 

C1 = { l ,  5 ,  7, I l } ,  

C3 = {3 , 9} ,  

C6 = {6} , 

C2 = {2 ,  10} , 

C4 = {4 , 8 } , 

Cn = { 12} . 

" Exercise 10. What are the classes Cd for n = 14? 

We have m in Cd if and only if (m . n )  = d. But (m, n) = d if and only 
if (m/d, n/d) = 1 .  That is, an integer m is in class Cd if and only if 
mId is relatively prime to n/d. The number of positive integers less 
than or equal to n/d and relatively prime to n/d is cp(n/d) by definition. 
Thus, the number of elements in class Cd is cp(nld) . 

Exercise 1 1 .  Check that this is correct for n = 1 2  and n = 14. 
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Since there is a class for each divisor of n ,  the total number of ele­
ments in all the classes Cd is 

2: cf>(nld) .  
din 

if, 
That is, n = L cf>(nld) . But L cf>(nld) is the same as L cf;(n) .  For ex-

din din din 
ample, the positive divisors of 9 are 1, 3, and 9,  so 2: cf;(d) = cf;(1) + 

dl9 
cf;(3) + cf;(9) and 2: cf>(nld) = cf;(9) + cf;(3) + cf>(1) ; the same terms in the 

dl9 
opposite order. Hence n = L cf;(d), and the theorem is proved. 

din 

Problems 

1 .  Calculate <;b(42) , <;b(420), and <;b(4200) . 

2 .  Calculate <;b(54), <;b(540) , and <;b(5400). 
* 3 .  Calculate <;b of 101 1 5  = 5 . 7 ·  1 72 and 100 1 15 = 5 . 20023 . 

4. Calculate <;b of 1 0 1 1 6  = 22 . 3' . 281 and 100 1 16 = 2' . 35 • 103.  
" 5 .  Calculate as (mod 1 5) for a = 1 ,  2, . . .  , 14.  

6.  Calculate as (mod 16) for a = 1 ,  2,  . . .  , 1 5. 

7. Show that if 11 is odd, then <;b(4n) = 2 <;ben) .  

8 .  Perfect numbers satisfy a(n) "" 2n . Which n satisfy <;ben) = 2n?  

t 9. 1 + 2 = (312)4>(3), 1 + 3 = (412)<;b(4), 1 + 2 + 3 + 4 = (5/2)<;b(5), 1 + 5 
= (6I2)<;b(6), 1 + 2 + 3 + 4 + 5 + 6 = (712)<;b(7) , and 1 + 3 + 5 + 7 = 

(812)4>(8) . Guess a theorem. 

10 .  Show that 

L a(p) - 2: <;b(p) = 2: d(P) .  

1 1 .  Prove Lemma 3 by  starting with the fact  that there are integers r and s such 
that ar + m s = 1 .  

1 2 .  If (a, m )  = 1 , show that any x such that 

x "" ca�("')-l (mod m)  

satisfies ax "" c (mod m) .  
1 3 .  Let/(n) = (n + <;b(n» I2 .  Show that!(f(n» = <p(n) if n = 2"', k == 2, 3 ,  . 

14 .  Find four solutions of <p(n) = 1 6 .  

*t 1 5 .  Find all solutions of <p(n) = 4 and prove that there are no more . 

1 6 .  Show that <p(mn) :> <;b(m)<;b(n) if m and n have a common factor greater than 
1 .  
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t 17. Show that (m , n) = 2 implies <f>(mn ) = 2 <f>(m)<f>(n) .  

18.  Show that <f>(n) � nl2 if and only if n = 21t for some positive integer k. 
t 19. Show that if n - 1 and n + 1 are both primes and n > 4, then <f>(n) :5 nl3 .  

20. Show that <f>(n) = 14 is impossible. 



Section 

10 
Primitive Roots 

In Theorem 1 of the last section, we saw that if (a , m) = 1 ,  then there is 
a positive integer t such that at ... 1 (mod m) ,  namely t = CPCtn) .  This can 
be proved independently of that theorem as follows . If (a , m) = 1 ,  then 
the least residues (mod m)  of a ,  a 2 , a 3 , • • • are all relatively prime to 
m .  There are cp(m) least residues (mod m )  that are relatively prime to m 
and infinitely many powers of a : it follows that there are positive inte­
gers j and k such thatj �  k and a i � a k (mod m).  Since (a, m) = 1 ,  the 
smaller power of a in the last congruence may Qe canceled, and we 
have either 

a i-k ... 1 (mod m) or a k-j - 1 (mod m) .  

So, if (a , m) = 1 ,  then there is  a positive integer t such that a I .... 1 (mod 
m) . In fact there are infinitely many, since it follows from a �(m) .... 1 
(mod m)  for (a , m) = 1 that for any positive integer k,  

a l+k.(m) "" a t(a k )�(.) "" a t ;a 1 (mod m) .  

The smallest such t is important enough that i t  has a name: if (a , m) = 1 ,  
then the order of a modulo m is the smallest positive integer t such that 
a t ... 1 (mod m) . 
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an (mod 1 1) 

a a2 a3 a4 as as a7 as a9 a lO 

1 1 1 1 1 1 1 1 1 1 
2 4 8 5 10 9 7 3 6 1 
3 9 5 4 1 3 9 5 4 1 
4 5 9 3 1 4 5 9 3 1 
5 3 4 9 1 5 3 4 9 1 
6 3 7 9 10 5 8 4 2 1 
7 5 2 3 10 4 6 9 8 1 
8 9 6 4 10 3 2 5 7 1 
9 4 3 5 1 9 4 3 5 1 

10 1 10 1 10 1 10 1 10 1 

For example, from the table above, 

2, 6, 7, and 8 have order 10 (mod 1 1) ,  

3 , 4, 5 ,  and 9 have order 5 ,  

1 0  has order 2 ,  and 

1 has order 1 .  

When this idea was introduced by Gauss, he called t the exponent to 
which a belongs (mod m),  and his long phrase is sometimes used in 
place of our shorter one. 

* Exercise 1. What are the orders of 3 , 5 ,  and 7, modulo 8? 

Note that in the above example, the orders 1 , 2, 5 ,  and 10 are divisors 
of <p( 1 l) = 10. This is no coincidence, as we show in Theorem 2. First 
we show that the set of integers n for which a n ... 1 (mod m )  is precisely 
the set of the mUltiples of the order of a (mod m) .  

Theorem 1. Suppose that (a , m) = 1 and a has order t (mod m).  Then 
a n "", 1 (mod m) if and only if n is a mUltiple of t .  

Proof. Suppose that n = tq for some integer q. Then an "" at'll lE (a )'l l!!!!1 

I 'll liE 1 (mod m )  because a t ... 1 (mod m ). 

Conversely, suppose that a n "iiii!i 1 (mod m ) . Since t is the smallest 
positive integer such that a t "" 1 (mod m),  we have n ?::. t so we can 
divide n by t to get n = tq + r with q ?::. 1 and 0 S r <: t . Thus 

1 "" a " '" a tq+T ... (a t)qa T .... lqa r "",  a T (mod m).  
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Since t is the smallest positive integer such that a t ..., 1 (mod m ) ,  a r ... 1 
(mod m )  with 0 :5 r < t is possible only if r = o. Thus n = tq and the 
theorem is proved . 

Thi s gives 

Theorem 2 .  If (0 , m) = 1 and a has order t (mod m ) ,  then t I <t>(m).  

Proof. From Euler's extension of Fermat's  Theorem we know that 
a<l>(171) ... 1 (mod m).  From Theorem 1 ,  <t>(m) is a mUltiple of t ,  which is 
what we wanted to prove . 

.,. Exercise 2. What order can an integer have (mod 9)? Find an example 
of each . 

As an example of an application of this idea, we prove 

Theorem 3. If p and q are odd primes and q 1 a P - 1 ,  then either q I a - I  

or q = 2kp + 1 for some integer k .  

Proof. Since q 1 0 p - 1 ,  we have a P '" 1 (mod q ) .  So, b y  Theorem 1 ,  the 
order of 0 (mod q) is a divisor of p .  That is,  0 has order 1 or p .  If the 
order of a is 1 ,  then 0 1 "", 1 (mod q),  so q la - 1 .  If on the other hand the 
order of a is p ,  then by Theorem 2, p 1 <t>(q); that is, p Iq - 1 .  So, 
q - 1 = rp for some integer r .  Since p and q are odd, r must be even, 
and this completes the proof. 

Corollary. Any divisor of 2P - 1 is of the form 2kp + 1 .  

.,. Exercise 3 .  Using the corollary, what i s  the s mallest possible prime 
divisor of 219 - I?  

The next theorem i s  essentially a corollary to Theorem 1 ,  but i t  i s  
worth stating explicitly. 

Theorem 4. If the order of a (mod m) is t ,  then aT ... as (mod m) if and 
only if r ... s (mod t). 
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Proof. Suppose that a r ... a S (mod m). We can suppose that r ;:::: . s with 
no loss of generality. Thus a r-. ... 1 (modm),  and from Theorem 1 ,  r - s 
is a mUltiple of t .  That, by definition, says that r .... s (mod t ) . 

To prove the converse, suppose that r '"  s (mod t ) .  Then r = s + kt 
for some integer k, and 

a r ... a sHt "", a '(a t )k ... a " (mod m )  

because a t ... 1 (mod m ) .  

If a i s  a least residue and the order of a (mod m ) is cp(m),  then w e  will 
say that a is a primitive root of m .  Primitive roots, and numbers that 
have them, are of special interest because of the following property: 

Theorem 5. If g is a primitive root of m ,  then the least residues, modulo 
m ,  of 

are a permutation of the cp(m )  positive integers less than m and rela­
tively prime to it. 

Proof. Since (g ,  m) = 1 ,  each power of g is relatively prime to m .  
Moreover, no two powers have the same least residue, because if 
gi ... gk (mod m) ,  then from Theorem 4,j '" k (mod cp(m».  Ifj 'F k (mod 
cp(m» , gj '" gk (mod m) .  

For example, 2 i s  a primitive root of 9,  and the powers 

are, (mod 9) , 

2 , 4, 8 , 7, 5 ,  1 .  

Exercise 4 .  Show that 3 is a primitive root of 7. 

JL Exercise 5. Find, by trial, a primitive root of 10. 

Not every integer has primitive roots-for example, 8 does not, as 
we saw in Exercise 1 .  We will now set out to show that each prime has 
a primitive root. The proof is not easy, requires a good deal of prepara-
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tion (Lemmas 1 through 3),  and because it is an existence proof, it does 
not show how to find the primitive root. For these reasons, you do not 
lose too much if you take the result on faith . 

If a has order t (mod m),  then any power of a will have an order no 
larger than t ,  because for any k ,  (a k )1 "" (a I )k .... 1 (mod m).  From the 
table of a n (mod 1 1) we can see that 2 is a primitive root of 1 1 ,  and 
among its powers, 23 , 21 , and 29 have order 10; 22 , 24 , 26 , and 2B have 
order 5 ;  and 25 has order 2 .  Lemma 1 tells which powers of a have the 
same order as a .  

Lemma 1 .  Suppose that a has order t (mod m ) . Then a Ie has order t (mod 
m) if and only if (k ,  t )  = 1 .  

Proof. Suppose that (k , t )  = 1 ,  and denote the order of 0 Ie by s .  We have 

1 """ (a l )k """ (ak )1 (mod m),  

so from Theorem 1 ,  s i t .  Because s i s  the order of Ok , 

(ak ). "" a ks "" 1 (mod m ) , 

so from Theorem 1 again, t I ks . Since (k , t )  = 1 ,  it follows that t i s .  This 
fact, together with the fact that s I t ,  implies s = t .  

To prove the converse, suppose that 0 and ak have order t and that 
(k , t) = r . Then 

1 "", a l "'" (a l )klr "" (a k )llr (mod m) ; 

because t is the order of a k ,  Theorem 1 says that tlr is a mUltiple of t .  
This implies that r = 1 .  

For example, 2 has order 1 0  (mod 1 1) ,  and the lemma says that 2 k  has 
order 10 if and only if (k , 10) = 1 ;  that is, for k = 1 ,  3 ,  7, and 9. The 
other primitive roots of 1 1  are thus 23, 21, and 29 , or 8 , 7 ,  and 6. Thus, if 
we can find one primitive root of a prime, we can find them all. This is 
worth stating as a 

Corollary. Suppose that g is a primitive root ofp . Then the least residue 
of gk is a primitive root of p if and only if (k , p - 1) = 1 .  

Proof. Apply Lemma 1 with t = P - 1 .  
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We now need a lemma about the solutions of polynomial congruences 
(modp).  Though it is an important theorem, we do not use it elsewhere. 

Lemma 2 .  Iff is a polynomial of degree n ,  then 

( 1) f(;K) = O (mod p) 

has at most n solutions .  

Proof. Let 

f(x) = a"x
" + a,,_lx "-1 + . . .  + ao 

have degree n ;  that is, a" "" 0 (mod p). We prove the lemma by induc­
tion. For n = 1 ,  

a lx + ao '" 0 (mod p) 

has but one solution, since (a i ,  p) = 1 .  Suppose that the lemma is  true 
for polynomials of degree n - I ,  and suppose thatfhas degree n .  Either 
f(;K) "" 0 (mod p) has no solutions or it has at least one. In the first case, 
the lemma is true. In the second case, suppose that r is a solution. That 
is,f(r) .... 0 (mod p). and r is a least residue (mod p). Then because x - r 
is a factor of Xl - rl for t = 0, 1 ,  . . . , n , we have 

f(;K) == f(x) -f(r) 
"" a,,(x" - r") + a"-I(;K

"-1  - r"-I) + . . .  + a l(;K - r) 

== (x - r)g(;K) (mod p),  

where g is a polynomial of degree n - 1 .  Suppose that s is also a 
solution of (1) .  Thus 

f(s) "iiiiii (s - r)g(s) .... 0 (mod p).  

Because p is a prime it follows that 

s """ r (mod p) or g (s) "" 0 (mod p); 

from the induction assumption, the second congruence has at most 
n - 1 solutions . Since the first congruence has just one solution, the 
proof is complete. 

Note that Lemma 2 is not true if the modulus is not a prime . For 
example, 

x2 + x  .... O (mod 6) 

has solutions 0 ,  2, 3 ,  and 5 .  
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Lemma 3 .  If d ip - 1 ,  then x d "" 1 (mod p) has exactly d solutions.  

Proof. From Fermat's Theorem, the congruence x P-1 ... 1 (mod p) has 
exactly p - 1 solutions, namely 1 , 2 ,  . . .  , p - 1 .  Moreover, 

xP-1 - 1 = (x d - 1)(x p-l-d + X P-1:-2d + . . . + 1)  

== (x
d 

- l)h (x).  

From Lemma 2 ,  we know that h (x) ... 0 (mod p) has at most p - 1 - d 
solutions. Hence x d "'" 1 (mod p) has at least d solutions. Applying 
Lemma 2 again, we see that it has exactly d solutions. 

We are at last prepared to prove 

Theorem 6. Every prime p has ¢(p - 1) primitive roots . 

Proof. Theorem 2 says that each of the integers 

(2) 1 , 2 ,  . . .  , p - l  

has an order that is a divisor of p - 1 .  For each divisor t of p - 1 ,  let t/J(t) 
denote the number of integers in (2) that have order t .  Restating what 
we have just said: 

L t/J(t) = p - 1 .  
tlp-l 

From Theorem 4 of Section 9, we have 

(3) L t/J(t) = L ¢(t). 
IIp-l tip-I 

If we can show that t/J(t) s ¢(t) for each t ,  it will follow from (3) that 
t/J(t) == ¢(t) for each t .  In particular, the number of primitive roots ofp 
will be t/J(P - 1) = ¢(P - I) .  

Choose some t .  If t/J(t) = 0, then t/J(t) < ¢(t) and we are done. If 
t/J(t) 1= 0, then there is an integer with order t ;  call it a .  The congruence 

(4) Xl ... 1 (mod p) 

has, according to Lemma 3 ,  exactly t solutions . Furthermore, (4) is 
satisfied by the t integers 

(5) 

and because no two of these have the same least residue (mod p) ,  they 
give all the solutions. From Lemma 1 ,  the numbers in (5) that have 
order t are those powers ale with (k, t) = 1 . But there are ¢(t) such 
numbers k .  Hence t/J(t) = ¢(t) in this case. As noted above, this com­
pletes the proof. 
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We have actually proved more than was stated in ·  Theorem 6. 
Although we will not use what we have proved, we have the 

Corollary. If p is a prime and t l (p - 1) ,  then the number of least 
residues (mod p) with order t is 4>(t). 

Exercise 6. Use the table of powers (mod 1 1) at the beginning of this 
section to verify that the corollary is true for p = 1 1 .  

Theorem 6 does not actually help us to find a primitive root of a 
prime. To find one, we may use tables or trial. Here is a table giving 
the smallest positive primitive root, gp , for each prime p less than 1 14. 

p 2 3 5 7 1 1  13 17 19 23 29 3 1  37 4 1  43 47 
gp 1 2 2 3 2 2 3 2 5 2 3 2 6 3 5 

p 53 59 61  67 71 73 79 83 89 97 101 103 l OT 109 1 13 
gp 2 2 2 2 7 5 3 2 3 5 2 5 2 6 3 

No method is known for predicting what will be the smallest positive 
primitive root of a given prime p ,  nor is there much known about the 
distribution of the 4>(P - 1) primitive roots among the least residues 
modulo p .  For example, the primitive roots of 71 and 73 are 

Primitive roots of 71 

7 11 13 2 1  22 28 
31 33  35 42 44 47 
52 53 55 56 59 6 1  
6 2  6 3  65 67 6 8  69 

Primitive roots of 73 

5 1 1  13 14 15 20 
26 28 29 3 1  33 34 
39 40 42 44 45 47 
53 58 59 60 62 68 

There are other numbers besides primes that have primitive roots . It 
can be proved that the onl y positive integers with primitive roots are 1 ,  
2 ,  4 ,  P e ,  and 2p e ,  where p is an odd prime and e is a positive integer . 

Exercise 7. Which of the integers 2, 3 ,  . . . ; 25 do not have primitive 
roots? 

As an example of the application of primitive roots, we will use them 
to prove part of Wilson's Theorem quickly and elegantly. Let g be a 
primitive root of the odd prime p .  From Theorem 5 ,  we know that the 
least residues (mod p) of g ,  g

2
, . . . , g  P-l are a permutation of 1 ,  2 ,  

. , p  - 1 .  Multiplying and using the fact that 

1 + 2 + 3 + . . .  + (p - 1) = (p - l)p/2 , 
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1 . 2 . . .  (p - 1) � g . g2 . . .  g P-l (mod p) 

or 

(p - 1) ! "'"  (gPyp-1l/2 ,.,. g (P- 1lI2 (mod p). 

But g (P-1l/2 satisfies x2  ... 1 (mod p),  and we know that g(p-llI2 "" 1 or - 1  

(mod p).  But the first case is impossible , since g is a primitive rocit of p .  
Thus (p - 1 ) ! !!Of - }  (mod p) . 

Problems 

I .  Find the orders of 1 ,  2 ,  . . . , 12 (mod 13) .  

2.  Find the orders of 1 ,  2,  . . .  , 1 6  (mod 1 7) .  
* 3 .  One of the primitive roots of 19 is 2. Find all of the others . 

4. One of the primitive roots of 23 is 5 .  Find all of the others . 
* 5 .  What are the orders of 2 ,  4 ,  7 ,  8 , 1 1 , 1 3 ,  and 14 (mod 1 5)? Does 15 have 

primitive roots? 

6 . What are the orders of 3 ,  7, 9, 1 1 , 1 3 , 1 7 ,  and 19 (mod 20)? Does 20 have 
primitive roots? 

* 7. Which integers have order 6 (mod 3 1)? 

8 .  Which integers have order 6 (mod 37)? 

9. If a ,  a 1 1 , has order t (mod p ) ,  show that 

a'-I + a l-2 + . . . + 1 ... 0 (mod p).  

1 0. If g and h are primitive roots of an odd prime p,  then g "" 11 k  (mod p) for 
some integer k .  Show that k is odd. 

t 1 1 .  Show that if g and h are primitive roots of an odd prime p, then the least 
residue of gh is not a primitive root of p .  

1 2 .  If g ,  h ,  and k are primitive roots of P .  i s  the least residue of gM always a 
primitive root of p ?  

t 1 3 .  Show that if a has order 3 (mod p) , then a + I has order 6 (mod p). 
14 .  If p and q are odd primes and q l a P  + 1 ,  show that either q l a  + 1 or 

q = 2kp + 1 for some integer k . 

*t 1 5 .  Suppose that a has order 4 (mod p). What is the least residue of (a + l)� 
(mod p)? 

16. Show that 1 3 1071 = 217 - 1 is prime. 

t 17. Show that (21S + 1)/3 is prime. 

18. If g is a primitive root of P . show that two consecutive powers of g have 
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consecutive least residues. That is, show that there exists k such that 
g k+l ... g k + 1 (mod p).  

t 19. If g is a primitive root of p , show that no three consecutive powers of g 
have consecutive least residues . That is, show that gk+2 "" gk+l + 1 "" 

glc + 2 (mod p) is impossible for any k. 
20. (a) Show that if m is a number having primitive roots, then the product of 

the positive integers less than or equal to m and relatively prime to it is 
congruent to - 1  (mod m ) .  

(b) Show that the result in (a) i s  not always true if m does not have primi­
tive roots . 



Section 

1 1  
Quadratic Congruences 

Mter studying linear congruences, it is natural to look at quadratic 
congruences: 

Ax2 + Bx + C "'" 0 (mod m).  

In this section we will restrict the modulus to an odd prime. We will 
assume that A '" 0 (mod p), because if A � 0 (mod p), then 

( 1 )  Ax2 + Bx + C l!m 0 (mod p) 

would be a linear congruence, not a quadratic congruence. We know 
that there is an integer A ' such thatAA '  "'" 1 (modp). Hence ( 1) has the 
same solutions as 

(2) x2 + A 'Bx + A'C "'" 0 (mod p). 

-}} Exercise 1.  Convert 2x2 + 3x + 1 == 0 (mod 5) to a quadratic congru­
ence whose first coefficient is 1 .  

If A 'B is even, we can complete the square in (2) to get 

( A 'B)2 (A 'B)2 X + 2 "'" -2- -A 'C (mod p); 

if A 'B is odd, we can change it to p + A'B, which is even, and then 
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complete the square. In either case, we have replaced (1)  with an 
equivalent congruence of the form 

(3) y 2 ""' a  (mod p) ;  

thus, if w e  can solve this congruence, we can solve any quadratic 
congruence (mod p) .  For example, to solve 3x2 + 6x + 5 "" 0 (mod 7) , 
first multiply both sides of the congruence by 5 and reduce the coeffi­
cients (mod 7) to get Xl + 2x + 4 "'" 0 (mod 7).  Then complete the 
square: x2 + 2x + 1 "'"  4 (mod 7) or (x + 1)2 "," 4 (mod 7) . Since y2 == 4 
(mod 7) has the solutions 2 and 5 ,  the original quadratic congruence has 
solutions 1 and 4. 

* Exercise 2. Change the quadratic in Exercise 1 to the form (3) .  

* Exercise 3 (optional) . B y  inspection, find all the solutions of the con­
gruence in Exerc.ise 2. 

Such congruences do not always have solutions . For example, 
modulo 5,  

and 

so x2 "'" a (mod 5) has a solution for a = 0, 1 ,  or 4 and no solution for 
a = 2 or 3 .  We note thatx2 "" 0 (modp) has only the solution X ""  0 (mod 
p ) .  We now show that ifpta, then solutions ofx2 ... a (mod p )  come in 
pairs . This should be no surprise: since ,.2  = (-r)2 , we have r2 "'" (_,.)2 
(mod p), so if ,. is a solution of x2  ... a (mod p),  then so is the least 
residue (mod p) of -r . Thus if r is a solution, so is p - r .  

Theorem 1 .  Suppose that p is an odd prime. If p % a, thenx2  "'" a (mod p)  
has exactly two solutions or  no solutions . 

Proof. Suppose that the congruence has a solution, and call it ,. . Then 
p - r is a solution too, and it is different fromr. (For if,. ... p - ,. (modp) ,  
then 2r  "'" 0 (mod p) ;  since (2 , p) = 1 ,  we get ,. ... 0 (mod p) ,  which is 
impossible.) Let s be any solution. Then ,.2 "", S2  (mod p), whence 
p i (r - s)�' + s) .  Thus 

p I (r - s )  or p I (r + s) .  

In  the first case, s ... r (mod p) .  In the second case, s ;;;; p - r  (mod p) .  
Since s ,  r,  and p - r are all least residues, we have s = ,.  or p - r ;  these 
are thus the only solutions. 
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This theorem is not true if the modulus is not prime. For example ,  
x 2 ",," 1 (mod 8) has four solutions , namely 1 , 3 , 5 ,  and 7.  

"" Exercise 4. If p > 3 ,  what are the two solutions of x 2  "" 4 (mod p)? 

It follows from Theorem 1 that if a is selected from the integers 1, 2, 
. . , p  - 1 ,  then x2 � a (mod p) will have two solutions for (p - 1 )/2 

values of a and no solutions for the other (p - 1)/2 values of a .  For 
example, if p = 1 1 ,  then x 2  is one of the entries in the table 

x 1 1 2 3 4 5 6 7 8 9 10 
x2 (mod 1 1) 1 4 9 5 3 3 5 9 4 I 

since x 2 "" (p - x)2 (mod p),  the entries are symmetric about p/2 and the 

same (p - 1)/2 least residues appear in each half. So, for those 
(p - 1)/2 least residues, x 2  "'" a (mod p) has two solutions, and for the 

other (p - 1)/2 least residues there are no solutions . 

* Exercise 5. For what values of a does x 2  � a (mod 7) have two 
solutions? 

It would be nice to be able to tell the two groups apart. In this section 

we will do this by deriving Euler's Criterion: 

Theorem 2. If p is an odd prime and p %a , then x2 "" a (mod p) has a 
solution or no solution depending on whether 

or - 1  (mod p).  

First we introduce some new words.  

If x 2  ... a (mod m )  has a solution , then a is  called a quadratic residue 
(mod m ) .  

If x 2  """ a (mod m )  has no solution , then a is called a quadratic non­
residue (mod m).  

There are also cubic residues , fourth-power residues, and s o  on, but 
assuming there is no danger of confusion, we will omit the adjective 
"quadratic" and refer to residues and nonresidues for short. 

Euler's Criterion can be easily derived using primitive roots. 

Proof of Theorem 2. Let g be a primitive root of the odd prime p .  Then 
a "'"  g k (mod p) for some k .  If k is even, then x2 "'" a (mod p) has a 
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solution, namely the least residue of gkl'l; further, by Fermat' s 
Theorem, 

If k is odd, then 

a(P-l)f2 ... (g(p-llf2)k ... (- I)k "'" - 1 (mod p) ,  

and also x 2 ... a (mod p) has no solution: · if it did have one. say r .  we 
would have 

which is impossible. 

As an example of the application of the criterion, let us see ifX 2  "'" 7 
(mod 3 1) has a solution. We must calculate 7(31-im. = 715 and see what its 
remainder is upon division by 3 1 . Of course we do not need to carry 
out the actual division: we have 

squaring, we get 

and 

72 """ 49 "", 18 (mod 3 1) ;  

74 ... 182 ""  324 "" 14  (mod 3 1), 
78 == 142 "", 1% "'" 10 (mod 31) ,  

716 ... 102 ... 100 ... 7 (mod 31) .  

Since 7 and 31  are relatively prime, we may divide the last congruence 
by 7 to get 715 "", 1 (mod 3 1) .  It follows from Euler's Criterion that 
x2 "'" 7 (mod 3 1) has a solution. 

Though Euler's Criterion tells us when x2 - a (mod p) has solutions, 
it gives us no way of actually finding them. Of course, it is possible to 
substitute x = 1, 2, 3 , 4 • . . .  until a solution is found. but this proce­
dure can be long and tiresome. The following method-adding multi­
ples of the modulus and factoring squares-is sometimes more conven­
ient. For example. take x2 ... 7 (mod 3 1 ) ,  which we know to have a 
solution. Adding 3 1  repeatedly, we have 

x2 ... 7 ... 38 "'" 69 ... 100 ... 102 (mod 3 1) ,  

and we see immediately that the congruence is satisfied when x = 10 or 
- 10; the two solutions are thus 10 and 21 .  That example was easy; a 
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more typical one is x2 ;,m 41 (mod 61) , which Euler's Criterion shows to 
have a solution. We have 

x2 ..., 41 .... 102 ... 1 63 """ 224 "'" 42 • 14 (mod 61) . 

Also, 

14 ... 75 ... 52 . 3 (mod 61) , 
SO x 2 '!EE 42 . 52 . 3 (mod 61) . But 

3 "'"  64 "'" 82 (mod 6 1 ) , 
so x 2  ... 42 . 52 . 82 ... 16()2 ... 382 (mod 61) . Thus x "'" ±38 (mod 61 ) , and 
the two solutions are 38 and 23 . This method will , with more or less 
labor, always produce the solutions .  

'" Exercise 6. Find the solutions of x2  .... 8 (mod 3 1) . 

Euler's Criterion is sometimes cumbersome to apply, even to con­
gruences with small numbers like x2 ... 3201 (mod 8191) . We will now 
develop a method for deciding when an integer is a quadratic residue 
(mod p) . The method is relatively easy to apply, even when the num­
bers are 3201 and 8 19 1 . It is based on the famous quadratic reciprocity 
theorem, which has many applications other than the one we will use it 
for. 

We start by introducing notation to abbreviate the long phrase, 
"x2 ... a (mod p) has a solution ." The French mathematician A. M.  
Legendre thought that he had proved the quadratic reciprocity theorem 
(Theorem 4 of this section) . He was mistaken, but in the course of his 
work on it, he introduced a useful symbol : 

The Legendre symbol, (alp) , where p is an odd prime and p % a is 
defined by 

(alp) = f 1 if a is a quadratic residue (mod p) 
t - 1 if a is a quadratic nonresidue (mod p). 

For example, (3/5) = - 1  becausex2 ... 3 (mod 5) has no solutions, and 
( 1/5) = 1 ,  because 1 is a quadratic residue (mod 5) . Neither (7/15) nor 
(91/7) is defined, the first because the second entry in the symbol is not 
an odd prime, and the second because 7191 . 

* Exercise 7. What is ( 1/3)? ( 1 /7)? ( 1/ 1 1 )? In general , what is ( lip)? 

* Exercise 8. What is (4/5)? (4/7)? (4Ip) for any odd prime p ?  
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* Exercise 9 (optional) . Induce a theorem from the two preceding 
exercises . 

To find out whether x 2 """. 3201 (mod 8 191) has a solution, we can 
evaluate (320118191) .  To do this , we will need some rules on how 
Legendre symbols can be manipulated. We will start with three simple 
but important properties . 

Theorem 3 .  The Legendre symbol has the properties 

(A) if a � b (mod p) , then (alp) = (blp) , 

(B) ifpja. then (a%lp )  = 1 ,  
(C) ifpja and pjb . then (ablp )  = (alp}(blp).  

In the above properties and throughout the rest of this section, we 
will agree that p and q represent odd primes, and that the first entry in a 
Legendre symbol is not a multiple of the second entry; with these 
conventions, all Legendre symbols are defined. 

Proofof Theorem 3. (A): Suppose that x2  ... a (mod p) has a solution. If 
a '"  b (mod p), then x2 "" b (mod p) also has a solution-the same one. 
This shows that 

(4) if (alp)  = 1 and a '"  b (mod p) ,  

Exercise 10. Verify that 

(5) if (alp) = - 1  and a '"  b (mod p),  

Together, (4) and (5)  show that (A) is  true. 

then (blp) = 1 .  

then (blp) = - 1 . 

(B): Clearly, Xl """ a2 (mod p) has a solution-namely, the least resi­
due of a (mod p) .  

(C): This important property of the Legendre symbol , in combination 
with the quadratic reciprocity theorem, makes the symbol useful for 
computations . In words, (C) says that the product of two residues is a 
residue; the product of two nonresidues is a residue; and the product of 
a residue and a nonresidue is a nonresidue. To prove (C) we use Euler's  
Criterion. In terms of the Legendre symbol, it says 

(alp) = 1 if a (p- l)/2 "'" 1 (mod p), 

and 

(alp) = - 1  if a(p-ll/2 ... - 1 (mod p) .  
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Comparing the l '  s and - 1 '  s, we see that 

(6) (alp) ;Iiii a (P-lJJ2 (mod p) .  

So, from (6) and the fact that (xy)" .... x"y" (mod p),  we have 

(ablp) ;E (ab YP-IH% '"" a(P-ll/%b(p-l)('l ;Iiii (alp )(blp )  (mod p) .  

We have not yet proved (C) ; we have only shown that 

(ablp) ... (alp)(blp) (mod p) .  

But the left-hand side of the congruence i s  either 1 or -1,  and so  i s  the 
right-hand side. Hence, the only way that the two numbers can be 
congruent modulo p is if they are equal . We have now proved (C) . 

We can also use (6) to give quick proofs of (A) and (B) .  For example, 
to prove (A), we have from (6) 

(alp) ""' a(P-l l/2 '"" b(P-IHZ "'" (blp) (mod p), 

and since the value of a Legendre symbol is 1 or - 1 ,  congruence 
implies equality. 

Exercise 1 1 .  Prove (B), using (6). 

Exercise 12. Prove that (4a/p) = (alp). 

*' Exercise 13. Evaluate ( 1915) and (-9/13) by using (A) and (B). 

The quadratic reciprocity theorem tells us how (p/q) and (qlp) are 
related. The theorem was guessed by Euler and Legendre years before 
it was first proved by Gauss, who eventually gave several proofs . It is 
an example of a deep and important theorem whose statement was 
arrived at by observation. Consider the following tables: 

p p 

5 7 1 1  13 17 19 23 5 7 1 1  13 17 1 9  23 

3 - 1  
5 
7 

q 1 1  
1 3  
17  
1 9  

1 - 1  1 - 1  1 - 1  3 - 1  - 1  1 1 - 1  - 1  1 
- 1  1 - 1  - 1  1 - 1  5 - 1  1 - 1  - 1  1 - 1 

1 - 1  - 1  - 1  1 7 - 1  - 1  - 1  1 - 1 
- 1  - 1  - 1  - 1  q 1 1  - 1  - 1  1 1 

(Plq) 

1 - 1  1 13  1 - 1  1 
1 - 1 17 1 - 1  

1 19 - 1  
(qlp) 
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Can you by observation see any relation between (P/q) and (q/p)? These 
tables are perhaps too small to allow any firm guesses to be made 
(Gauss's tables had thousands of entries) , but note that the columns in 
both tables are the same for p = 5,  13 , and 17. So are the rows in both 
tables the same for these three primes . What 5, 13 ,  and 17 have that the 
rest of the primes less than 29 do not is the property of being congruent 
to 1 (mod 4). On this evidence, we might make the correct guess: 

If either p or q is congruent to 1 (mod 4), then (p/q) = (q/p).  

All of the entries not covered by this rule change sign from one table to 
the next. This behavior can be explained by the following hypothesis: 

If p and q are both congruent to 3 (mod 4) , then (p/q) = - (q/p) . 

These guesses are in fact generally true, and they make up 

Theorem 4. The Quadratic Reciprocity Theorem. If p and q are odd 
primes and p """ q == 3 (mod 4), then (p/q) = - (q/p).  Otherwise, (p/q) = 

(q/p ). 

We will postpone the proof of this theorem until the next section, but 
we will not hesitate to apply it for lack of a proof. Suppose that we want 
to see if x2 ..,. 85 (mod 97) has a solution. That is, we want to evaluate 
(85/97) . With Theorems 3 and 4, we can carry the evaluation to a 
conclusion. We have 

(7) (85/97) = (17 · 5/97) = (17/97)(5/97) 

by property (C) in Theorem 3 .  We will attack each factor in (7) sepa­
rately. Because 97 ..,. 1 (mod 4) (and, for that matter, 17 ... 1 (mod 4) 
too) ,  the quadratic reciprocity theorem says that 

(17/97) = (97/17) . 

Property (A) in Theorem 3 says that 

(97/17) = (12117) 

and 

( 12117) = (4 · 3/17) = (4/17)(3/17) 

= (3/17) 

= ( 17/3) 

= (2/3) 

= - 1  

(by (C» 
(by (B» 
(by Theorem 4) 

(by (A» 
(by inspection) . 
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The other factor is simpler: 

(5/97) = (97/5) 
= (2/5) 
= - 1  

(by Theorem 4) 

(by (A» 

(by inspection) . 

Putting these calculations back in (7) , we get 

(85/97) = ( 17/97)(5/97) = (- 1)(- 1 )  = 1 ; 

thus the congruence has a solution . By applying (A) first, we could 
have evaluated (85/97) in another way: 

(85/97) = (- 12/97) = (- 1/97)(4/97)(3/97) = (- 1/97)(3/97) . 

We see that 

(3/97) = (97/3) = ( 1 /3) = 1 ,  

sO (85/97) = (- 1/97); if we know (- l/97) , we then know (85/97). 
If you look at a number of examples of Legendre symbols,  it will 

become evident that to evaluate any one by using Theorems 3 and 4, it 

is enough to know what ( - l/p) and (2/p) are for any p .  Euler's Criterion 
quickly gives us ( - lip) : 

Theorem 5. If p i s  an odd prime ,  then 

(- lIp ) = 1 
and 

(- l/p) == - }  

if p � 1 (mod 4) , 

if p ... 3 (mod 4) . 

In words, - 1  is a quadratic residue of primes congruent to 1 (mod 4) . 
and a nonresidue of all other odd primes . 

Proof. Euler's Criterion says that 

( - lip) ... ( _ lYP-l)/2 (mod p) ; 

since (p - 1)/2 is even if p "'" 1 (mod 4) and (p - 1)/2 is odd if p ... 3 
(mod 4) , the theorem is proved. 

In the example we were just considering, (- 1/97) = 1 because 97 ... 1 
(mod 4) . 
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Theorem 5 tells us that we can sometimes find square roots of - 1  
modulo p :  whenever p "'" 1 (mod 4), - 1  has a square root (mod p) . 

* Exercise 14. For which of the primes 3 ,  5 ,  7, 1 1 ,  13 ,  17,  19, and 23 is - 1  
a quadratic residue? 

* Exercise 15. Evaluate (6/7) and (2123)( 1 1123) .  

I t  is not so  easy to  determine whether 2 has a square root (mod p) .  
Euler's Criterion says that 

(2/p) .,.. 2(p-[)!2 (mod p), 

but it is not obvious for which primes 2(p-[)!2 is congruent to 1 (mod p) . 
We will find out in the next section. For now, we state the result: 

Theorem 6. If p is an odd prime, then 

(2/p) = 1 

(2/p) = - 1  

if 
if 

or 
or 

7 (mod 8), 

5 (mod 8) .  

Theorem 6 together with Theorems 3 to 5 enables us to evaluate 
any Legendre symbol . For example, we can now evaluate (320118191 ) .  
The calculations go as follows :  

and 

(3201/8191) = (3/8191)( 1 1/8 191)(97/8191) ;  

(3/8191) = - (8191/3) = - (1/3) = - 1 ,  

( 1 1/8191)  = - (8191/1 1 )  = -(7/ 1 1) = ( 1 1/7) = (4/7) = I ,  

(97/8191) = (8191/97) = (43/97) = (97/43) = ( 1 1143) 

= -(43/1 1)  = -(- 1/1 1) = 1 .  

Thus we see that (320118191)  = (- 1)(1)(1 ) = - 1 .  Compare the labor 
of evaluating (3201/8191)  as we have just done with that of determining 
by trial and error whether x2 � 320 1 (mod 8191)  has a solution. To 
calculate P ,  22 , • • •  , 40952 and divide each by 8191 is no light 
task. Theorems 3 to 6 are, for this job at least, an enormous help. 
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1 .  Which of the following congruences have solutions? 

x' "" 7 (mod 53) 

x' "" 53 (mod 7) 

x, "" 14 (mod 3 1) 

x' "" 25 (mod 997) 

2 .  Which of the following congruences have solutions?  

x2 .., 8 (mod 53) 

x, "" 54 (mod 7) 

x' E 15 (mod 3 1) 

x2 "" 625 (mod 9973) 

3. Find solutions for the congruences in Problem I that have them. 

4. Find solutions for the congruences in Problem 2 that have them. 

5. Calculate (33171) ,  (34171) ,  (3517 1 ) ,  and (36171 ) .  

6 .  Calculate (33173) ,  (34173), (35/73), and (36173). 

7. Solve 2x2 + 3x + 1 ,.. 0 (mod 7) and 2x2 + 3x + I ""  0 (mod 1 01 ) .  

8 .  Solve 3x'  + x + 8 ""  0 (mod 1 1) and 3x' + x + 52 "" 0 (mod 1 I) .  

9.  Calculate ( 1234/4567) and (432114567). 
1 0 .  Calculate ( 1 356/2467) and (653 1/2467) . 
1 1 .  Show that if p = q + 4a (p and q are odd primes) , then (p/q) = (alq) . 
12 .  Show that if p = 1 2k + 1 for some k ,  then (3/p) = 1 .  

1 3 .  Show that Theorem 6 could also be written (2/p) = (- 1)')" - 1 l/� for odd 
primes p .  

14 .  Show that the quadratic reciprocity theorem could also be
· 

written 
(P/q)(q/p) = ( - 1 )')'- J jlq- l )/4 for odd primes p and q .  

t 1 5 .  Student A says, "I've checked all the way up t o  1 00 and I still haven 't 
found /1 so that /12 + 1 is divisible by 7. I ' m  tired now-I'll find one tomor­
row. "  Student B says, after a few seconds of reflection, "No you won't ." 
How did B know so quickly? 

1 6 .  Show that if a is a quadratic residue (mod p) and ab "" I (mod p) then b is a 
quadratic residue (mod p). 

,. 17 .  Does x! ... 2 1 1  (mod 1 59) have a solution? Note that 1 59 is not prime. 

1 8 .  Prove that if p "" 3 (mod 8) and (p - 1 )/2 is prime, then (p - 1 )/2 is a 
quadratic residue (mod p). 

' 

" 19 .  Generalize Problem 16 by fi nding what condition on r will guarantee that if 
a is a quadratic residue (mod p) and ab "" r (mod p ) ,  then b is a quadratic 
residue (mod p). 

20. Suppose that p = q + 4a, where p and q are odd primes. Show that 
(a/p) = (a/q) . 



Section 

12 
Quadratic Reciprocity 

In this section we will prove the two theorems stated and used without 
proof in the last section: the quadratic reciprocity theorem and the 
theorem that enables us to evaluate (2Jp). The proof of the quadratic 
reciprocity theorem is not easy. Gauss guessed that the theorem was 
true in 1795, at the age of 18 ,  after tabulating more than 10,000 values of 
(plq), but he was not able to find his first proof of it for more than a 
year. Any proof that could elude the mighty mind of Gauss for that long 
is not easy to find. 

At the base of both theorems is the following result, sometimes 
called Gauss's Lemma: 

Theorem 1 .  Suppose that p is an odd prime , p ta ,  and there are among 
the least residues (mod p) of 

a ,  2a,  3a , . . . , (p � 1) a 

exactly g that are greater than (p - 1)/2 . Then x2 "" a (mod p) has a 
solution or no solution according as g is even or odd. Otherwise stated, 

(alp) = ( _ 1)0 .  

94 
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Before proving the theorem, we will illustrate its application by tak­

ing a = 5 and p = 17 .  We have (p - 1)/2 = 8, and the integers 

5 ,  10, 15 ,  20, 25, 30, 35 , 40 

have least residues (mod 17) 

5, 10,  1 5 , 3 , 8 ,  1 3 ,  1 , 6 .  

Three of these are greater than (p - 1)/2. Theorem 1 then says that 5 is 

a quadratic nonresidue (mod 17) ,  which is so. 

Exercise 1. Check that the theorem gives the right result in this case by 
applying Euler's Criterion and showing that 58 ... - 1  (mod 17). 

Proof of Theorem 1 .  Let 

denote the least residues (mod p) of 

a ,  2a ,  . . . , « p - 1)/2)a 

that are less than or equal to (p - 1)12 ,  and let 

denote those that are greater than (p - 1 )/2 . Thus k + g = (p - 1)12 . To 
prove the theorem, from Euler' s Criterion it is enough to show that 

a(P-1l12 3;; ( - l )g (mod p), 

and this is what we proceed to do. In the example above , k = 5, and 
g = 3 ;  the set of r ' s  is {5 ,  3 ,  8 ,  I ,  6} ,  and the set of s ' s  is { l 0, 15 ,  1 3 } .  
Both in the example and in general , n o  two of the r ' s  are congruent 
(mod p) . Suppose that two were . Then we would have for some k! and 
kz , 

o :S kJ :S (p - 1)12, O :S  kz :S (p - 1)12. 

Because (a, p) = 1, it follows that k !  = kz . For the same reason, no two 
of the s '  s are congruent (mod p) .  Now , consider the set of numbers 

Each integer n in the set satisfies 1 :S n :S (p - 1)/2, and there are 
( p  - 1 )/2 elements in the set. Gauss noticed, and we will now prove, 
that the numbers in the set are all different. From this it will follow that 
the elements in ( 1 )  are just a permutation of the integers 

(2) 1 , 2 ,  . . .  , (p - 1)12 , 
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and thus the product of the elements in ( 1 )  is the same as the product of 
the elements in (2) . From this the theorem will follow. In the example 
we considered, the set of r's was {5 ,  3, 8 , 1 ,  6 } ,  and the set of (p - s)'s 
was p, 2,  4 } ;  between them, they include all the integers from 1 to 8 .  

To show that the elements in ( 1 )  are distinct, w e  have only to show 
that 

1"; '" P - Sj (mod p) 

for any i and j ,  because we have already seen that the r's and s's are 
distinct among themselves . Suppose that for some i andj we have 

ri '" P - Sj (mod p) .  

Then r ,  + Sj  == 0 (mod p).  Since 1"; ... ta (mod p) and Sj  "" Lta (mod p)  for 
some t and ll, with t and u positive integers less than or equal to 
(p - 1)/2, we would have 

(t + u)a '" 0 (mod p) ; 

since (a, p )  = I ,  we have t + Lt ... 0 (mod p),  and this is impossible, 
because 2 ::s t + II ::s p - 1 .  Thus all of the elements in the set ( 1 )  are 
distinct, and consequently are a rearrangement of the elements in (2) . 
Hence, 

(3) rI1"2 · · ·  I"k (P - sd(p - S2 ) • . .  (p - s,, ) = 1 · 2  . . .  « p  - 1 )12) . 

Because p - Sj '" -Sj (mod p) for ali j,  and because there are g such 
terms, (3) becomes 

(4) rlr2 · • · rkSIS2 · . .  s"(- I)g ",,, (p ; 1) ! (mod p) . 

But 1"1 , r2 ' • • •  , I"k > 5 1 ,  52 '  
residues (mod p) of 

, s" are, by definition, the least 

a , 2a , . . . , « p  - 1)/2)a 

in some order , so that the product 1"[1"2 . . . I"kS IS2 · . 511 is congruent 
(mod p) to a (2a)(3a ) ·  . .  « p - 1)/2)a .  Thus (4) gives 

a(p-J)f2( - 1)!' � ;  I } "" � ;  I }  (modp) .  

The common factor is relatively prime to p and may be canceled to 
give 

a(p-I>/2 (- 1)" "" 1 (mod p). 

If we mUltiply both sides of the last congruence by ( - 1)", we have 
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a (P-ll/2 "" (- 1)11 (mod p). 

But we know that a (p-Il/2 "'" (alp) (mod p) . Putting the last two congru­
ences together, and noting that if the two numbers are congruent (mod 
p) ,  then they must be equal, we have 

(alp) = (_ 1)9 ,  

and this is what we wanted to prove . 

'" Exercise 2. Apply the theorem to determine whether x2 "'" 7 (mod 23) 
has a solution. 

We will now apply the last theorem to evaluate (2/p) for any odd 
prime p .  According to the theorem, we need to find out how many of 
the least residues (mod p) of 

(5) 2 , 4 , 6 ,  . . . , 2 (p ; 1) 
are greater than (p - 1 )/2. Since all the numbers in (5) are already least 
residues, none of them being larger than p ,  we have only to see ,how 
many of them are greater than (p - 1)/2. Let the first even integer 
greater than (p - 1)12 be 2a. Between 2 and (p - 1)12 there are 
a -'-- 1 even integers, namely 2, 4, 6, . . .  , 2(a - 1 ) .  So, the number 
of even integers from 2 to p - 1 which are greater than (p - 1)12 is 
the total number of even integers , (p - 1)12, minus the number less 
than (p - 1)/2,  which is a - I . That is, 

But 

p - 1 g = '-2 - - (a - 1) . 

p - l 
-2-

f---+----Ij • • •  1---+1--'*)(-+----11 • • •  
o 2 2a - l  2a 2a + ! p - 1 P 

2a is the smallest integer greater than p ; 1 , so 

a is the smallest integ�r greater than p � 1 , so 

a - I  is the smallest integer greater than p � 5 , so 
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-(a - 1) is the largest integer less than - (p � 5) , so 

-(a - I )  _(p � 5) a - I 

p - l  p - 5  
g is the largest integer less than -2- - -4- : 

g is thus the largest integer less than (p + 3)/4 . 

Exercise 3. Verify that the entries in the following table are correct. 

P 1 3 5 7 1 1 
g I l 2 3 

13 1 7  19 23 29 
3 4 5 6 7  

Suppose that p "'" 1 (mod 8). Then p = 1 + &/( for some k ,  and 
(p + 3)/4 = (4 + 8k)/4 = 1 + 2k . It follows that g = 2k and that 
(- 1)" = 1 .  From Theorem 1 ,  (2Ip) = 1 if p is  1 (mod 8) . Suppose that 
p "" 3 (mod 8). Thenp = 3 + 8k for somek ,  and (p + 3)/4 = (6 + 8k)/4 = 
2k + 3/2 . It follows that g = 2k + 1 and that (- 1)9 = - 1 . From 
Theorem 1 ,  (21p) = - 1  if p  "" 3 (mod 8) . 

Exercise 4. Check the cases p 50 5 (mod 8) and p == 7 (mod 8). 

Thus we have proved 

Theorem 2. If p is an odd prime, then 

(2/p) = 1 

(2Ip) = - 1  
if 
if 

p ",, 1 
p """ 3 

or 
or 

7 (mod 8) , 
5 (mod 8) . 

As an example of the use of Theorem 2 ,  we will state and prove a 
result that is not used later , but is pleasing. Although we know when 
a number has primitive roots , finding the actual roots is generally not 
easy. For example, 2 is a primitive root of 3 , 5 ,  1 1 ,  13 , 19, 29, 37 , 53 , 
59, 6 1 ,  67 , and 83 among the primes less than 100 ,  and it is not a 
primitive root of the others . No theorem has been proved that will tell 
which primes 2 is a primitive root of, and it has not even been proved 
that 2 is a primitive root of infinitely many primes. But we do have 
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Theorem 3 .  If p and 4p + 1 are both primes, then 2 is a primitive root 
of 4p + 1 . 

Proof. Let q = 4p + 1. Then <J>(q) = 4p, so 2 has order 1 ,  2 ,  4, p ,  2p ,  
or 4p (mod q ) ;  w e  will show that the first five cases are impossible. 
We have 

221' "" 2('1-1) 5 (2Jq) (mod q)  

by Euler' s Criterion. But p is odd, so 4p ... 4 (mod 8) , and q "'" 4p + 
1 ,... 5 (mod 8); we know from Theorem 2 that 2 is a quadratic non­
residue of primes congruent to 5 (mod 8) . Hence 

221' "" - 1  (mod q),  

so 2 does not have order 2p. Nor can the order of 2 be any of the 
divisors of 2p ,  which are of course 1 , 2,  and p .  Since 2 does not have 
order 4 either (24 5' 1 (mod q) implies q 1 1 5 ,  so q = 5, which is im­
possible) , the theorem is proved. 

We will now give Gauss's third proof of the quadratic reciprocity 
theorem. It depends on Gauss's Lemma (Theorem 1) and on a lemma 
we will now prove. 

Lemma 1 .  If p and q are different odd primes, then 
(1'-1)f2 

[
k 

] 
(q-l)12 [ k 

] 
- 1 - 1 2: � + 2: � =

p
_ . q

_ . 
k- I P k=l q 2 2 

The notation [kq/p J denotes the greatest integer not larger than 
kq/p .  For example, take p = 1 1  and q = 7 .  Then 

(6) � [ ��  ] = [ 1
7
1 ] + [ �i ] + [ i! ] + [ ;� ]  + [ ii] 

= 0 + 1 + 1 + 2 + 3 = 7 

and 

(7) 

= 1 + 3 + 4 = 8 ,  
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and (p - l)(q - 1 )/4 = 15 = 8 + 7. The numbers have a geometrical 

interpretation: [35/ 1 1 ]  is the number of positive integers less than 

35/1 1 ,  and in the figure below that is the number of lattice points 
(points with integer c oefficients) above the x-axis and below the line 
y = 7x/l l when x = 5 .  The other terms in (6) are the number of 

y 

3 

2 

x 

2 4 

lattice points below the line when x = 1 ,  2, 3 ,  and 4. In the same 
way, the terms in (7) are the number of lattice points to the left of 

the line and to the right of the y-axis for y = 1 ,  2, and 3. The number 

of lattice points in the 5-by-3 rectangle is 15 .  

Exercise 5 .  Verify that the lemma is  true for p = 5 and q = 7 .  

Proof of Lemma 1 .  The idea used in the example works in general. Let 

(1'-1)/2 [ k  ] 
S (p, q) = 6 : ;  

we are thus trying to prove that 

S(p, q) + S(q, p) = (p - l)(q - 1)/4 .  

The figure on page 101  shows the same geometry as the figure on this 
page, but in general (actually , in the figure on page 101 ,  q = 13 and 
p = 1 1) . Just as in the example, S(p, q) is the number of lattice 
points below the line y = qx/p and above the x-axis for x = 1 ,  2, . . . ,  
(p - 1)/2 . Also, S (q, p )  is the number of lattice points to the left of the 
line and to the right of the y-axis .  There are no lattice points on the line, 
because if (a, b) were on the line, then b = qa/p or bp = qa , and this is 
impossible. (Since p I bp , we have p I qa and since (p, q) = 1 ,  it follows 
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c 

B 

x 
• 

p - 3  p - I 
-2- -2-

that p l a .  But 1 :::; a :::; (p - 1)/2, and there are no multiples ofp in that 
interval. )  Thus each of the lattice points in or on the boundary of the 
rectangle ABeD is counted exactly once; on the one hand, this number 
is S(p, q) + S(q, p) ,  and on the other it is «p - l)/2)«q - 1)/2) . This 
proves the lemma. 

Theorem 4. The Quadratic Reciprocity Theorem. If p and q are odd 
primes, then 

(p/q)(q/p) = (_ 1 )<P-J)(Q-l }/4 . 

Note that this is equivalent to the way we stated the theorem earlier 
(Theorem 4 of Section 1 1) : If p "" q "" 3 (mod 4), then (p/q) = - (q/p);  
otherwise, (P/q) = (q/p) .  This is so because (p - l)(q - 1)/4 is even un­
less p "'" q "" 3 (mod 4). 

Proof. As in the proof of Gauss's Lemma, let us take the least residues 
(mod p) of 
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p - 1  q , 2£j ,  3q ,  . . . , -2- q 

and separate them into two classes. Put those less than or equal to 
(p - 1)/2 in one class and call them 

and put those greater than (p - 1)/2 in another and call them 

Thus k + g == (p - 1)/2 . The conclusion of Gauss's  Lemma was that 
(q/p) = (- 1)9 . For short, let 

and 

While proving Gauss's  Lemma, we showed that the set of numbers 

was a permutation of , 

(9) 1 ,  2, . . . , (p - 1)/2. 

It follows that the sum of the elements in (8) is the same as the sum of 
the elements in (9). Remember that in the proof of Gauss's Lemma, we 
took the product of the elements in (8) and equated it to the product of 
the elements in (9), Here, then, is a possible starting point of this proof: 
Gauss may have thought (in German), "What would happen if I 
equated the sums instead of the products?" and then constructed the 
proof. Whatever it was that he thought, the lesson to be learned is 
that proofs often do not start at the beginning: The sum of the numbers 
in (9) is , by a well-known formula ( 1  + 2 + . . .  + n = n(n + 1)/2; see 
Appendix A for a proof) , 

i (p ; 1 )  ( p ; 1 
+ 1) = p2 ; 1 . 

The sum of the elements in (8) is 

Thus we have 

( 10) 

k 9 

L rj + L (p - Sj) = R + gp - S .  
j-I j,..l 

R = S - gp + (p2 - 1)/8. 

The least residue (mod p) of jq U = 1 ,  2, . . . , (p - 1)/2) is the 
remainder when we divide jq by p .  We know the quotient, Uqlp],  so 
if we let tj denote the least residue (mod p) of jq , we have 

jq = Uq/p]p + Ij , 



Quadratic Reciprocity 103 

j = 1 ,  2, . . . , (p - 1)12. If we sum these equations over j, we have 

or 

or 

( 1 1 )  

(p- I)/2 (p-I)/2 (p-I)/! 

L jq = L Uq/p]p + L j�l .1=1 j;="'l 

(p-1ll2 (p-l)/2 
q L j = p  L 

j=1 j�1 

k iii 
Uq/p] + L rj + L Sj, 

j-I j:"1 

q(p2 - 1)/8 = pS(p, q) + R + S .  

Substituting into this from ( 1 0) ,  we get 

q(p2 _ 1)/8 = pS(p, q) + 2S - gp + (p2 - 1)/8, 

or 

( 1 2) (q - 1)(p2 - 1)/8 = p(S (p, q) - g) + 2S . 

In ( 1 2) ,  the left-hand side is even (because (p2 - 1)18 is an integer and 
q - 1 is even), and 2S is even. It follows that the remaining term in ( 12) 
is even , and so S(p, q) - g is even. Hence 

(- l)S(p,Q)-g = 1 .  

Since (- l)JI = (q/p), then 

( 13) ( - l)S(p,Q) = (- l )fI  = (q/p). 

Now we can repeat the argument with p and q interchanged-nowhere 
have we required q to have a property that p doe s  not-and get 

( 14) ( - 1)S(Q,P) = (p/q) .  

Multiplying ( 13) and (14) ,  we have 

(_ 1)S(p,Q)+S(Q,P) = (p/q )(q/p), 

and from Lemma 1 ,  we have 

( _ l)<P-l)(Q-l )14 = (p/q)(q/p) , 

which is what we wanted. 

The proof may seem to be unsatisfying: each step is correct , and 

hence the conclusion is true, but it is not clear why the steps are there 

and where they came from. That is because there are at least eight 
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levels of mathematical understanding, and it is hard for someone. on a 
lower level to appreciate what goes on at a higher level. The levels are, 

I think: 

1 .  Being able to do arithmetic. 

2. B eing able to substitute numbers in formulas . 

3 .  Given formulas , being able to get other formulas .  

4. Being able to understand the hypotheses and conclusions of 
theorems . 

5 .  B eing able to understand the proofs of theorems, step by step. 

6. Being able to really understand the proofs of theorems: that is , 

seeing why the proof is as it is, and comprehending the inward­
ness of the theorem and its relation to other theorems. 

7. Being able to generalize and extend theorems. 

8.  Being able to see new relationships and discover and prove en­

tirely new theorems. 

Those of us stuck at level 5 can no more understand the workings of a 

level 8 mind than a cow could understand calculus. 

Problems 

" r  1. Adapt the method used in the text to evaluate (Zip) to evaluate (3/p ) .  

2. Show that 3 i s  a quadratic nonresidue o f  a ll  primes o f  the form 4"  + l .  

t 3 .  Show that 3 i s  a quadratic nonresidue o f  all Mersenne primes greater than 
3 .  

4 .  (a) Prove that if p � 7 (mod 8), then p i (2(·-1 112 - 1) . 
(b) Find a factor of 283 - 1 . 

t 5. (a) If p and q = lOp + 3 are odd primes , show that (p/q ) = (3/p). 
(b) If p and q = lOp + 1 are odd primes, show that (p/q ) = ( - lip). 

6. (a) Which primes can divide n2 + 1 for some n? 
(b)  Which odd primes can divide n1 + n for some n?  
(c) Which odd primes can divide n2  + 2n + 2 for some n ?  

7 .  (a) Show that if p "" 3 (mod 4) and a is quadratic residue (mod p) , then 
p - a is a quadratic nonresidue (mod p) .  

" (b) What if p "" 1 (mod 4)? 
8.  If p > 3, show that p divides the sum of its quadratic residues that are 

also least residues . 



*t 9 . If p is an odd prime , evaluate 
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( l  . 21p) + (2 . 31p) + . . . + «p - 2)(p - l)lp). 
10.  Show that if p "" 1 (mod 4) , then x2 ,.. - 1  (mod p) h as a solution given by 

the least residue (mod p) of «p - 1)/2 ) ! '  
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13 
Numbers in Other Bases 

One of the great accomplishments of the human mind, and one that 

made mathematics possible , was the invention of our familiar notation 
for writing integers . We write integers in a place-value notation, with 
each place indicating a different power of 10.  For example, 

3 14 , 159 = 3 . lOS + 1 · 1()4 + 4 · 1Q3 + 1 · 1Q3 + 5 . 101 + 9 ·  }Oil. 

The first people to use place-value notation were the BabylOnians of 

more than 3000 years ago .  None of the other ancient civilizations-not 

the Egyptians, the Chinese , or the Greeks-had the place-value idea, 
and if the Babylonians had not discovered it , it might have remained 

forever undiscovered, with great consequences for the history of the 
human race. Among other things, this book would never have been 

written. The Babylonians transmitted the idea to the Hindus (before 
600 Be) , from whom the Arabs got it (by 600 AD) , and the Arabs made it 
known in Europe ( 1200 AD) .  

There i s  no reason why some integer other than 1 0  could not be used 
for the same purpose. The choice of 10 is only an anatomical accident. 
In fact ,  other integers-we will call them bases-have been used in the 
past. The Babylonians sometimes used the base 60, and the ancient 
Mayans used the base 20. Today, numbers written in the bases 2 ,  8 ,  and 

106 
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16 are used by computers . In this section, we will look at integers in 
bases other than 1 0. 

We start by looking at a special case. 

Theorem 1 .  Every positive integer can be written as a sum of distinct 
powers of two. 

For example, 22 = 24 + 22 + 21 and 23 = 24 + 22 + 21 + 2°. But 

24 = 23 + 23 + 23 is not a proper representation, because the powers of 
two are not distinct. 

* Exercise 1 .  Write 3 1  and 33 as sums of distinct powers of two. 

Proof of Theorem 1. The idea of the proof is to take an integer n and 
subtract from it the largest power of 2 that is smaller than it-say 2k. 
Then we do the same for n - 2k .  If we continue this process ,  we will 
eventually get a representation of n in the form that we want. To make 
this argument rigorous,  we prove the theorem by induction: 1 = 2°, 
2 = 21 , and 3 = 2° + 21 , so the theorem is true if the integer is 1 ,  2, or 3 .  
Suppose now that every integer k, k ::; n - 1 ,  can b e  written as a sum of 
distinct powers of 2. We want to show that n can also be so written. We 
know that n falls between some two distinct powers of 2; that is,  there is 
an integer r such that 

* Exercise 2. What is r if n = 74? Ifn = 1 74? 

The largest power of 2 not larger than n is 2T. Let n' = n - 2r. Then 
n '  :5 n - 1 ,  so the induction assumption tells us that it can be written as 
the sum of distinct powers of two: 

where ej i= ej if i i= j. Since n '  = n - 2T , we have 

( 1 )  

and so  n can be  written as a sum of powers of two . To complete the 
proof, we need to show that r is different from any of el>  e2, . . . , ek; . 

" Exercise 3. Show that this is true. 
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We now show that the representation ( 1) is unique. 

Theorem 2. Every positive integer can be written as the sum of distinct 
powers of 2 in only one way. 

Proof. Suppose that n has two representations as a sum of distinct 
powers of 2. We will show that the representations are really the same. 
To make the notation less clumsy, we note that any sum of distinct 
powers of 2 can be written in the form 

(2) 

for same k ,  where di = 0 or 1 for each i. Conversely, every such sum is 
a sum of distinct powers of 2 .  Hence it is immaterial whether we write n 
in the form (1)  or (2) , and (2) has the advantage of having no subscripts 
on the exponents . If n has two representations, we have 

(3) n = do + d1 · 2 + d2 • 22 + . . . + dk ' 2k 

= eo + e 1  · 2  + ez . 22 + . . . + eli: . 2k ,  

where di = 0 or 1 and ei = 0 or 1 for each i .  (Note that we lose no 
generality in assuming that the two representations have the same 
number of terms . If one is longer than the other, we can add zero terms 
to the shorter one until the two have the same length.) Subtracting the 
second representation in (3) from the first gives 

(4) 0 = ( do - eo) + (dj - e 1 ) · 2  + (dz - e2) · 22 + . . . + (dk - ek) · 2k 

Hence 21 (do - eo ) .  Bu t since do and e o are either 0 or 1 ,  it follows that 

- 1 ::5 do - eo ::5 1 .  

Since the only multiple of 2 in that range is zero, do = eo.  Thus the first 
term in (4) disappears, and we may divide what remains by 2 to get 

(5) 0 = ( dl - e 1 ) + ( d2 - ez) · 2  + . . , + (d/; - e/;) · 2k- 1 •  

The same argument as before shows that d 1  = e j •  Dropping the term 
d1 - e 1  from (5), dividing by 2 and applying the same argument again, 
we get dz = ez. And so on: d3 - e3 = d4 - e4 = . . . = d/; - ek = 0, and 
the two representations in (5) were the same. 

Theorems 1 and 2 show that every n can be written in exactly one 

way in the form 



(6) 
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for some k ,  where each d is either 0 or 1 . This is like the ordinary 
decimal representation for integers . It is so like it that we can write 
numbers of the form (6) in the same style as we usually write integers. 
The powers of 2 and the plus signs in (6) are not essential , since the 
thing that determines n is the sequence do , dJ , • • •  , dk• We will 
write the expression (6) as 

(dkdk-1 • • •  dJdo"h , 

and say that we have written the integer in the base 2 . The subscript 2 
reminds us that dr is multiplied by 2r. For example,  

101001z  = 1 + 0 . 2 + 0 . 22 + 1 . 23 + 0 . 24  + 1 . 25 

= 1 + 8 + 32 = 41 . 

In the other direction, 

94 = 64 + 16 + 8 + 4 + 2 
= 1 . 26 + 0 . 25 + 1 . 24 + 1 . 23 + 1 . 22 + 1 · 21 + 0 . 2° 

= 101 1 1 1°2 ' 

'" Exercise 4. Evaluate 10012 , 1 1 12 , and 10000002 , 

"' Exercise 5. Write 2 ,  20, and 200 in the base 2 .  

We know that every integer can be uniquely expressed in the form 

do + dl . 10 + dz . 102 + . . .  + dk . 10 k  

for some k ,  with O :s  d; < 10 ,  i = 0, 1 ,  . . . , k , and Theorems 1 and 2 
show that every integer can be uniquely expressed in the form 

do + d1 · 2  + dz . 22 + . . .  + dk . 2 k  

for somek ,  with 0 :S d; < 2 ,  i = 0, 1 ,  . . . , k . What we can do for 2 and 
10 ,  we ought to be able to do for any integer greater than 1 .  In fact, we 
can. We will prove 

Theorem 3 .  Let b 2:: 2 be any integer (called the base) . Any positive 
integer can be written uniquely in the base b ;  that is , in the form 

n = do + dl · b + d2 ' b2 + . , .  + dk 'bk 

for some k , with O :s d; < b , i = O, 1 ,  . . . , k . 
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Proof. We will first show that each integer has such a representation 
and then show that it is unique. To show that there is a representation, 
we could adapt the proof of Theorem 1 ,  but the proof that we will 
present here (which could also be applied to Theorem 1) gives a con­
struction for the digits of n in the base b .  Divide n by b :  the division 
algorithm says 

n = qlb + do , 

We can divide the quotient by b ,  

ql = q2b + dl >  

and continue the process, 

q2 = q3 b + d']., 

q3 = q4b + d3 , 

o :s; do < b .  

o :s: d2 < b ,  

0 :5  d3 < b ,  

and so on. Since n > q [ > q 2 > q 3 > . . . and each q i is nonnegative, the 
sequence of q '  s will sooner or later terminate. That is, we will come to k 
such that 

But then 

n = do + q [b = do + (dl + qzb)b = do + d[b + qzb2 

= do + d[b + (dz + q3b)b! = do + d[b + dzb2 + q3b3 

= do + d[b + d2b2 + . . .  + dk_ [bk- 1 + qkbk 

= do + d1b + d2b2 + . . .  + dkbk, 

and this is the desired representation. 
To show that it is unique, we use the same idea we used in the 

proof of Theorem 2. Suppose that n has two representations: 

n = do + d1b + d2b2 + . . . + dkbk 

= eo + e 1b + ezb2 + . . .  + ekbk 

for some k ,  where 

(7) and 

for i = 0, 1 ,  . . .  , k . (As in Theorem 2, there is no loss in generality 
in assuming that the two representations have the same number of 
terms .) Subtracting one representation from the other gives 
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0 =  (do - eo) + (dj - ej)b + (dz - ez)b2 + . . . + (die - ek)b'<. 

We see that b I (do - eo) . From (7) it follows that do = eo· 

Exercise 6.  Complete the proof. 

For short, we will write 

do + djb + . . .  + dkbk = (dkdk-1 • • • djdo)b' 

For example , 

1 1 17 = 1 + 1 ' 7 + 1 . 72 = 57jo ·  

We will usually omit the subscript b when b = 10.  Unless noted 
otherwise ,  every integer without a subscript is written in base 10.  

To find the representation of a base-IO  integer in the base b ,  the 
scheme used in the proof of Theorem 3 is as good as any. For 
example, to write 3 1415  in the base 8 ,  we perform repeated divisions 
by 8: 

3 14 1 5  = 8 · 3926 + 7, 

3926 = 8 ·490 + 6, 

490 = 8 · 61 + 2, 

61 = 8 ' 7 + 5 , 

7 = 8 ' 0 + 7, 

and hence 3 141510 = 752678 , (Check: 

752678 = 7 + 6 · 8  + 2 . 82 + 5 . 83 + 7 · 34 = 7 + 48 + 128 + 2560 + 28672 

= 3 14 15.) 

To make the arithmetic easier, the divisions may be arranged 
differently. For example, we have 3 14 1510 = 1 604067 : 

quotients 
7) 3 14 1 5  

4487 
641 

9 1  
1 3  

1 
o 

remainder 

6 
o 
4 
o 
6 
1 
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Problems 

'" 1 .  Write 1492 in base 

2 3 7 9 1 l .  

2 .  Write 1776 in base 

4 5 6 8 1 1 .  

'" 3 .  Write in base 10: 

3 14 15 3 14 1 7  3 14 1 11  3 14 1 12, 

4. Write in base 10: 

1 2 1 56 1 2 158 1 2 1 5& 1 2 15.0' 

'" 5. Solve for x: 

1 23", = 1002 •. 

6. Solve for x: 

456.1' = 220 1 ,  
'" 7. Construct a multiplication table in base 7 .  

8 .  Construct a multiplication table i n  base 8 .  
'" 9. All numbers in this problem are in base 9. Calculate, in base 9 (that is,  no 

conversions to any other base): 

15 + 24 + 33 

42 · 12 

1620 - 1453 

3 14 · 152.  

10 .  With the same instructions as in Problem 9, calculate 

16 + 35 + 44 

53. · 23  

1453 - 1 066 

425 · 263 . 

'" 1 1 .  Let (.d, d2 dJ • • • )0 stand for d, /b + d2 /b� + d3 /b3 + . . . .  Evaluate as ra­
tional numbers in base 10:  

( . 25)y ( . 333 . . .  ), ( . 5454 . .  ' )7 '  

12.  With the same instructions as in Problem 1 1 ,  evaluate 

( .36)8 ( .444 . .  ')8 ( . 6565 . .  ' )8 '  
'" 13.  In which bases b is l l l lb divisible by 5? 

14. (a) Show that 1 237 , 1 327 , 3 1 21 , 23 17 , and 2 1 37 are even integers . 
(b) Show that in the base 7, an integer is even if and only if the sum of its 

digits is even. 
(c) In whiei!- other bases is it true that if an integer is even, then any 

permutation of its digits is even? 
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1 5 .  An eccentric philanthropist undertakes to give away $ 1 00 ,000. He is eccen­
tric because he insists that each of his gifts be a number of dollars that is a 
power of two, and he will give no more than one gift of any amount. How 
does he distribute the money? 

1 6. Prove that every positive integer can be written unique in the form 

for some k , where ei = - I , O, or l , i = O, I ,  . . .  , k . 

'" 17 .  Hexadecimal notation (base 16) uses the digits A ,  B ,  C, D, E ,  and F for 
decimals 10, 1 1 ,  12, 1 3 ,  14 ,  and 1 5 .  
(a) Convert 3073 , 53456, 49370, and 45278 to hexadecimal. 
(b) Convert CAB , BOBO. DEAF, and A IDE to decimal. 
(c) Is there a longer hexadecimal word than DEFACADED? 

1 8 .  To convert from decimal to binary. it is convenient to convert first to octal, 
and then replace each octal digit with its binary representation. For exam­
ple, 1 92910 = 361 18  = 1 1 , ]  10,001 ,001% and 1 0, 1 1  I ,O I0, 1 0Oa = 27248 = 149210, 
Show that this process works in general. 

19 .  Another method of representing integers is in the factorial notation: 
(dk dk_I · · · dl), = dl · I ! + d! · 2 ! + . . .  + dk ' k ! ,  0 5.  di 5. i. 

'" (a) Write (22l tO)! and (242 120)! in base 10 .  
'" (b) Write 920 and 1848 in  factorial notation. 
t (c) Prove that every positive integer has a unique representation in facto­

rial notation. 

20. Find a base b in which 45b and 550 are squares of consecutive integers. 
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Duodecimals 

In this section , which has no new mathematical content and can be 
omitted without serious loss, we will take a close look at arithmetic in 

base 12 .  In doing this ,  we will reexamine the familiar processes of 
addition, subtraction, multiplication, and division in an unfamiliar set­
ting. After completing the exercises, you should realize how expert you 

really are at computation (in the base 10) , and what enormous labor it 
takes to become quick at arithmetical operations .  We all worked hard 
in the third grade. Any base would serve as well as 12 to give practice, 

but some parts of arithmetic-notably decimals-are nicer in base 12 
than they are in base 10. Besides , there is a good deal of twelveness in 

everyday life: items are measured by the dozen and gross , there are 12 

months in the year, 12 inches in a foot, half a dozen feet in a fathom, 

two dozen hours in the day, and 30 dozen degrees in the circle. The 
reason for this abundance of twelves is the easy divisibility of 12 by 3 ,  
4 ,  and 6; we want to make such divisions much more often than we 
want to divide things by 5 .  Counting by tens is the result of a really 
unfortunate accident. How much better ordered the world would be if 
we had six fingers on each hand! Because we don't, it is unlikely that we 

will ever abandon counting by tens, even though counting by dozens is 

manifestly better. But there is a Duodecimal Society of America that 
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devotes itself to educating the public in preparation for the day when 
the change is made. Although the public is still largely untouched, the 
Society looks forward to that day with faint but unquenchable hope. 

In order to count by dozens, we need two new digits to represent 1010 
and 1 1 10 , From now on in this section, all numbers will be 
duodecimals -that is, written in base 12 ,  unless otherwise indicated 
with a subscript. The settled notation among duodecimalists for 1010 
and 1 110 seems to be X and 10, the Greek letters chi and epsilon . But they 
are pronounced "dec" and "eJ ."  Thus duodecimal counting goes 

1 , 2, 3 , 4, 5, 6, 7 , 8 , 9, X, 10, 10, 1 1 ,  . . . , lX , 110 , 20, . . . , 

30, . . . , 40, . . . , XO, . • .  , EO, . . .  , 1 00 ,  . . .  . 

We need names for duodecimal numbers.  The Duodecimal Society 
advocates "do" (from dozen) for 10 and "gro" for 1 00 ,  so that, for 
example, 15 is "do five" and 327 is "3 gro 2 do 7." Unfortunately, the 
S ociety' s  names for larger mUltiples of a dozen do not fall naturally 
from the lips: 1000, 10000, 100000, and 1000000 are , respectively, rna, 
do-rna, gro-mo, and bi-mo, so that 2201 1 0  would have to be read "2 
bi-mo, 2 gro-mo, rna,  gro, do." But if  you want to call IX and SE 
"decteen" and "fifty-el" instead of " do dec" and "five do el," proba­
bly only the most fanatical duodecimalists would object. 

Addition of duodecimals is not hard if we remember to carry one 
whenever we sum to a dozen. Here is the addition table for six: 

6 6 6 6 6 6 6 6 6 6 6 6 

1 2 3 4 5 6 7 8 9 X E 10 -
7 8 9 X E 10  1 1  12 13 14  15  16  

and here are some summations :  

5 3 1  123 XXX 
4 41 456 EEE 

3 15 789 XEX 
2 9 XEO EXE 

12 94 2036 3996 

'" Exercise 1 .  Calculate 9 + 4 ,  X + E ,  E 1 + I.:, and 1 6  + 1 9  + 37 . 

Although we can carry the addition tables in our heads without too 
much trouble, we need a multiplication table to look at when we 
multiply, just as when we learned to multiply in the base X. 
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Duodecimal Multiplication Table 
2 3 4 5 6 7 8 9 X I: 10 

2 4 6 8 X 10 12 14 16 18 IX 20 
3 6 9 10  13  1 6  1 9  20 23 26 29 30 
4 8 10 14 1 8  20 24 28 30 34 38 40 
5 X 13 18 21  26 2IE 34 39 42 47 50 
6 10 16  20 26 30 36 40 46 50 56 60 
7 1 2  1 9  24 21: 36 41  48 53 5X 65 70 
8 14 20 28 34 40 48 54 60 68 74 80 
9 16  23 30 39  46 53 60 69 76 83 90 
X 1 8  26 34 42 50 5X 68 76 84 92 xO 
E IX 29 38  47 56 65 74 83 92 Xl EO 

Exercise 2. Verify that the x-times table is correct. 

With the aid of the table, multiplication is no problem. For example , 

34 1755 XX 
5 X EE 

148 14262 91:2 

9E2 

x912 

*. Exercise 3. Calculate 14 ' 2 , 14 · 3 ,  and 9 · X · E . 

With enough practice,  we could absorb the entries of the table and 
learn to do without it; eventually, "9  times 9" would produce "6 

do 9" purely by reflex. 
Division is slightly harder, even with the aid of the table, because 

lack of experience may lead us to choose the wrong digit in a quotient. 
It takes practice to be able to see at a glance how many X5's there 

are in 763 . 

,. Exercise 4. How many are there? 

Here are some worked-out divisions: 

5 )  456 ( X8 22 ) 456 ( 20 3 1  ) 4 159 ( 140 

42 44 3 1  - -
36 16 105 

34 104 -
2 19 



'" Exercise 5. Calculate 1966/6 and 1 1 1 1/5. 
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In duodecimals, 1/3 and 1/6 have terminating expansions-ll3 = 

4110  = .4 and 116 = 2/10  = .2-and this is pleasanter than the case in 

base )( .  The expansion of 1/5 , however , does not terminate: long 
division shows that 115 = .24972497 . . . .  We will signify the repeat­

ing part of a repeating decimal by putting a bar over it; thus we will 
write 1/5 = .2497 . We will continue to call such things "decimals," 
even though some other name, perhaps "dozinals," would be more 
appropriate. 

" Exercise 6. Calculate the decimal representation of 117. 

Here is a table of reciprocals up through one decth and one elth. 

n 2 3 4 5 6  7 8 9  X E 

lin .6 .4 .3 .2497 .2 . 186)(35 . 16 . 14 . 12497 . I  

Half of these terminate, and one elth, like one-ninth i n  base )( ,  has 
a particularly simple repeating part. 

To convert from decimals to rational numbers, we use the same 
principles as in base )( .  For example, . 25 = 25/100. This is a fraction 
in lowest terms ,  though your reflexes may tell you differently; 
actually, the numerator is a prime. Repeating decimals can be con­
verted to fractions in the usual way. For example , let N = .6666 . . . .  
Then ION = 6.6666 . . . , so ION - N = 6. Thus EN = 6, and N = 6/E; 

this is a fraction in its lowest terms. 

Problems 

'" 1 .  Calculate 3 141 + 5926 and 3 14 1  . 5926 without changing to another base. 

2 .  Calculate 3 14115926 to three places without changing to another base. 

*' 3. Write 7/1 3  as a decimal and .2929 . . .  as a rational number. 

4. Write 8/1 4 as a decimal and . 3030 . . . as a rational number. 

* 5. Which would you rather have, $4e .e6 or $(59. 95}1( ? 

6. Show that the last digit of a square is 0, 1 ,  4 , or 9 .  

7 .  Show that the last digit ofx " , n = 2, 3 ,  . 
(a) is 0 if x = 6 
(b) is 4 if x = X 
(c) is x ifx = 3 , 5 , 7 , 8 ,  or f and n is odd. 
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8. Show that any integer whose last digit is 3 ,  6, 9, or 0 has 3 for a factor. 

9. Show that any integer whose last digit is 4, 8, or 0 has 4 for a factor, and 
that any integer whose last digit is 6 or 0 has 6 for a factor. 

)(.  Show that any integer whose digits sum to a multiple of E is divisible by E. 

*t E .  The Duodecimal Society of America also advocates the do-metric system 
of weights and measures: 1000 yards to the mile, 10 ounces to the pound, 
and 10 flounces to the pint. The Society relates distance, weight, and 
volume by requiring that a cubic yard hold 1000 pints of water, which 
weighs 1000 pounds. If we keep the yard as it is now, how do the do-metric 
mile, pint, and pound compare to the ordinary mile, pint, and pound? 

10. (a) How many days are there in the year? 
(b) What other three-digit numbers have the same property-that is , 

d! d2 d3 = «d! + 1)d2d3h? 
(c) Are there any four-digit numbers with this property? 
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15 
Decimals 

Decimals are very handy for calculation. If asked to add 2/5, 1/3 , 3/10, 
4/7, 5/9, and 3/8 together, any sensible calculator would change the 

fractions to decimals first. Decimals are so handy that the metric sys­
tem, which is based on decimals, is replacing our traditional system of 
measurement, which is partly decimal, partly binary, partly duodeci­
mal, and partly arbitrary. 

Decimals seem so natural to us that it is easy to forget that they were 
a human invention and not something that was handed down to us from 
above, engraved on stone tablets . Our present system of notation, 
which we take for granted,  was arrived at only after a long evolution, 
still going on recently. The first author whose works we could read 
today without being puzzled by the notation is Descartes, who wrote in 

the first half of the seventeenth century, and even he wrote xx instead 
of x2 and 0: for = .  The great period for evolution of notat\on was the 
sixteenth century, when each author of a book would use his own 

personal notation (there was no traditional notation, since printing had 

been invented only tlie century before) . The fittest notations survived , 
and decimals, invented by Simon Stevin in the last half of the 1 500's ,  
was one of them . 

Some fractions have simple decimal expansions (118 = . 125); others 

119  



120 Section 15 

are not as simple, but still tolerable ( 1/3 = . 333 . . . ); and others are not 
simple at all (1/17 = .05882352941 17647 . . . ) .  In this section we will see 
which fractions are simplest, and we will find a way of determining how 
long the repeating part of a repeating decimal is without having to carry 
out the actual calculation of the decimal. In doing so, we will use 

nothing deeper than the division algorithm and some congruences . 

We will denote 

by 

.d1d2d3 • • • •  

A bar over part of a decimal will indicate that this part repeats indefin­

itely. For example , 

. 0147 = . 0 147474747 . and 1/3 = .3 . 

* Exercise 1. Write .0147 as a rational number. 

* Exercise 2. Write 7/4 1 as a decimal with a bar over its repeating part. 

Let us make a table of the decimal expansions of the reciprocals of 
the first few integers and see if we can notice any pattern in them. A 
zero in the period column means that the decimal terminates .  

n 1/n Period n lin Period 

2 .5  0 16 . 0625 0 

3 . 3  1 17 .0588235294 1 17647 16 
4 .25 0 18 .05 1 
5 . 2  0 19 .05263 157894736842 1 18 
6 . 16 1 20 .05 0 
7 . 142857 6 21  .047619 6 
8 . 125 0 22 .045 2 
9 .1 1 23 .0434782608695652173913 22 

10 . 1  0 24 . 04 16 1 
1 1  .09 2 25 .04 0 
12 .083 1 26 .03846 15 6 
13 .076923 6 27 .037 3 
14 .07 14285 6 28 .0357 1428 6 
15  .06 29 . 034482758620689655 172413793 1 28 
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The integers in the table whose decimal reciprocals terminate are 

2, 4, 5 , 8 , 10 , 16 , 20, 25, 

and one thing these numbers have in common is that they are all of 
the form 2a5h for some nonnegative integers a and b .  We might guess 
that the decimal expansion of the reciprocal of any number of this 
form terminates. The next three such numbers are 32, 40, and 50, and 

1/32 = .03 125, 1140 = .025, 1150 = .02 
all terminate. In fact, this guess is right. 

Theorem 1. If a and b are any nonnegative integers, then the decimal 
expansion of 112(19 terminates . 

Proof. Let M be the maximum of a and b .  Then 

1OM(112Q5h) = 2M-"5M-b 
is an integer-call it n .  Clearly, n S; 10M • Thus 

n 
2a5h = 10"1 ' 

so the decimal expansion of 112n5b consists of the digits of n ,  perhaps 
preceded by some zeros . 

" Exercise 3. Calculate M for 16, 20, and 25, and compare with the 
table to see that it gives the correct length of the expansion. 

* Exercise 4. How many places are there in the expansions of 1/128, 
11320, and 1I800? 

The converse of Theorem 1 is also true. 

Theorem 2. If lin has a terminating decimal expansion, then n = 2"5b 
for some nonnegative integers a and b . 

Proof. Let the terminating decimal expansion of lin be 

lin = .dJd2 • • • dk 
= dJJ10 + d2/1 02 + . . . + dkll O"' . 
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Then 

lin = (dl l()k-l + d2 1()k-2 + . . . + dk)/IOk. 

Call the integer in parentheses m .  Then the last equation is 

lin = ml10k or 

The only prime divisors of 10k are 2 and 5, and so the only prime 
divisors of n are 2 and 5. This proves the theorem. 

Theorems 1 and 2 completely take care of terminating decimals. 
Among the expansions in the table that do not terminate are some 
with long periods, including n = 17, 19,  23 , and 29. In each case, 
n is a prime and the period of lin is n - 1 .  But not all primes p have 
period p - 1 for their reciprocals: liB has period 6, not 12 ,  and li l t  
has period 2, not 10. As a first step in investigating the lengths of 
the periods of reciprocals, we prove 

Theorem 3. The length of the decimal period of lin is no longer than 
11 - 1 . 

Proof. L�t
- \

t be such that l()I < n < IOH I .  Then using the division 
algorithm repeatedly, we have 

( 1 ) 

1 0t+l = dIn + rI , 

lOrI = dzn + 1"2 , 

IOr2 = d311 + 1"3 ' 

O < r1 < n ,  

o ::5 r2 < n,  

0 ::5 1"3 < n , 

Note that each dk is less than 10 ,  because for k = 2, 3 ,  

dkn = 101"k-1 - I"k ::5 101"k-l < lOn , 

and 

dIn = lOt+1 - rl < 101+1 = 10 . 1 01 < IOn . 

If we divide both sides of the last equation in ( I )  by IOn , we get 



(2) 
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If we divide both sides of the first equation in ( 1 )  by lOl+ln and 

apply (2) over and over. we get 

lin = d1/ l ()1+1 + r1/n 101+1 

= d1/lOl+ 1 + dz/l 0t+2 + /"zln 1 01+2 

= d11 101+1 
+ dz/lOI+2 + d3/1()1+3 + r3/n 1 ()1+3 

= d1/l 01+ 1 + dt11 01+2 + ds/l ()1+3 + d4/1 ()1H + 

and thus d] , dz, d3, • • •  are the digits in the decimal expansion of 
1111 . For example , for n = 7 we have 

10 = 1 ·  7 + 3 ,  

3 0  = 4 ' 7 .+ 2 ,  

20 = 2 - 7 + 6, 

60 = 8 - 7  + 4 ,  

40  = 5 · 7  + 5 ,  

50 = 7 · 7  + 1 ,  

10 = 1 - 7 + 3 , 

and so the decimal expansion of 117 is . 142857 .  

Each of the remainders r 1 .  r 2 '  . . . i s  one of the n values 0 ,  1 ,  

2 ,  . . . , n  - 1 .  Hence, among the n + 1 integers r l >  1'2 , _ • •  , r,,+1 >  

there must be two that are equal . I f  you put n + 1 objects i n  n boxes, 
one box will contain two objects . If rj = rk, then it follows from ( 1 )  

that dk+l = dj+l >  d"H = dj+2 ,  _ . .  , and the decimal repeats, with 
period no greater than n .  

" Exercise 5 .  Apply the division algorithm to find the decimal \:fipansion 
of 114 1 .  

I f  n is relatively prime to 10, we can get more information about 
the period of lin . 

Theorem 4. If (n , 10) = 1 ,  then the period  of lin is r ,  where r is the 
smallest positive integer such that l Or ... 1 (mod n) .  

Proof. We first note that the integer I' exists. The least residues 
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(mod n) of 1 , 10,  1()2, 1 03 ,  . . .  , 1 0'1-1 may assume only the values 

1 ,  2, 3 ,  . . .  , n  - 1 ,  because no power of 10 is divisible by n .  Now 
we have n objects to be put in n - 1 boxes, so one box contains two 
objects: there exist nonnegative integers a and b ,  a I- b  and both 
smaller than n ,  such that l Oa "", 100 (mod n) .  Dividing the congruence 
by the smaller power of 10, which is possible since (n , 1 0) = 1 ,  we 
get r .  

Since lOr 21 1 (mod n) ,  we know that 

(3) lOr - l = kn 

for some integer k .  Written in the base 10, k has at most r digits 
(because k < lor). Let 

k = dr-Idr-2 • • •  dIdo = dr_I lOr-1 + dr_2 1or-2 + . . . + d1 l0 + do. 

where 0 ::; dk < 10 for k = 0 ,  1 ,  . . .  , r . Then from (3) 

k dr-1dr-2 • • • do 
n lor - 1 . H}," 1 - lO-r 

= ( .dr- 1dr-2 • • • do)(1 + lO-r + 1O-2r + . . . ) 

= .dr-1dr-z . . .  do· 

This shows that the period of lin is at most r. (The sequence 

123 123 123 123 . . .  

repeats after every ninth digit ,  but its period is three. )  We must show 
that the period is no smaller than r .  We can do this by using the 
above argument backward. Suppose that the period Of lin is s :  that is, 

1 Ii = .e.-1eS-2 . . .  eo 

for some integers eo ,  e1 ,  . . . •  e.-I .  Then 

1 
- = ( .e.-le.-2 . . .  eo)( 1 + lO-< + 10-2$ + . . . ) n 

_ e$-le$_2 . . . eo . -
10' - 1 

If we let the integer in the numerator be k ' ,  we have nk' = 10" - 1 ,  so 
10" ,.., 1 (mod n) .  Since r was the smallest positive integer such that 

lOr "", 1 (mod n),  this shows that s "21 . 

For an example , if n is 2 1 ,  we have 



n 
10" (mod 2 1 )  

1 2 3 4 
10  1 6  1 3  4 
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5 6 
1 9  1 

so 1 06 = 999999 is divisible by 2] , and in fact, 999999 = 21 · 476 19. Thus 

1 47619  47619 ( 1 ) 
21 = 999999 = 1000000 1 - 1 - .000001 

= ( .04761 9)(1 + ( .00000 1)+ ( .000001)2 + . . .  ) 
= .04761 90476190476 19 . . . . 

" Exercise 6. Apply Theorem 4 to find the period of 114 1 .  

Unfortunately , there are no general rules for looking at an integer and 
discovering what the number r is. Even among the primes, those for 
which r = p - 1 (7, 17 ,  19 , 23 , 29, . . . ) are scattered in a pattern no one 
has yet been able to decipher. 

So far we have considered fractions with numerator 1 only.  But the 
general rational number is no more difficult , and the proof of Theorem 4 
carries through for fractions c1n , where (c , n )  = 1 .  Also, if a fraction is 
divided by 2 or 5,  its period is not changed. Summarizing, we have 

Theorem 5. If n 1= 2ag> and (c, n )  = 1 ,  then the period of the decimal 
expansion of c1n is r, the smallest positive integer such that 

lOr """ 1 (mod n l ) , 

where 

and (n l ,  1 0) = 1 .  

Problems 

'" 1 .  Find the periods of the expansions of 1/66, I14608,  and 1I1 0 l .  

2 .  Find the periods of the expansions o f  1/666, I1925, and 1 I 100 l .  

'" 3 .  Find the smallest positive integer r such that l or ,.. 1 (mod n) i f  n is 33 or 
37. 

4. Find the smallest positive integer r such that 10"  ""' 1 (mod n)  if n is 42 or 
45 . 

5. Prove that if the decimal expansion of lin in the base b, that is,  
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terminates, then every prime divisor of n is a divisor of b .  

6 .  Prove that if every prime divisor of n is a divisor of b ,  then the decimal 
expansion of lin in the base b terminates . 

7. Which of the reciprocals of 1 3 ,  14,  . . . , 25 have terminating decimal 
expansions in the base 1 2? 

8 .  Prove that if (n , b )  = 1 ,  then the period of the decimal expansion of lin in 
the base b is the smallest positive integer such that b" "" I (mod n) .  

9.  In the base 2 ,  what is the period of the decimal expansion of (a) 113 , (b)  1 /5 ,  
(c)  In, (d) 119, (e) 1/1 1 ?  

t o .  C alCulate the decimal expansions i n  the base 2 o f  (a) 113 , (b) 115, (c) 119. 
* I I .  In the base 1 2 ,  what is the period of the deci mal expansion of (a) In, (b) 

1 / 1 1 ,  (c) 1I17? 

12. Calculate the decimal expansion in the base 12 of (a) 1 1 13 ,  (b) 1114.  

"t 13 .  Calculat¥. the following decimal expansions:  
(a) 119' iii: the '::lase 10 .  
(b)  I17l in  the base 8.  
(c)  1162 in  the base 7.  
(d) Guess a theorem. 
(e) Prove it. 

14. Show that 

� 7-nfn+PI2 
n = l  

is irrational. 
t 15 .  Let ( .a1 a2a3 . ) ! be defined to be 

a / I !  + az/2 ! + ai3 ' + " ' , 

with 0 S aj S (i - l ) !  for each i . Does every rational number have a ter­
minating ! expansion? Is it unique? 
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16 
Pythagorean Triangles 

More than 3500 years ago the Babylonians knew that the triangle 

whose sides have length 120,  1 19, and 169 is a right triangle. They knew 

many other such triangles too, including tr0se with sides 

4800, 460 1 , 6649, 
360 ,  3 1 9, 481 ,  
6480, 496 1 , 8 1 6 1 ,  
2400 , 1 679, 2929, 
2700, 177 1 ,  3229; 

they probably used them as a sort of table of trigonometric functions. 

They had observed, experimentally, that if x andy denote the lengths of 

the legs of a right triangle and z denotes the length of its hypotenuse, 

then x2 + yZ = zZ. However, it was not until the time of Pythagoras, 

some 2500 years ago , that it was proved that x2 + y2 always equals Z2, 
and the result changed from a mere observation like the Law of Gravity 

(which may be repealed tomorrow for all we know) to an eternal 

theorem that will never need revision and will never be shown to be 

false. There will come a day when the works of Shakespeare will be 

completely forgotten, but the Pythagorean Theorem will still be true: 

the works of humankind disappear, but mathematical truth endures! It 

is another reason for studying number theory. 

127 
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Many proofs of the Pythagorean Theorem are known, and Loomis 
[8] has compiled more than 400 of them. An Indian proof consisted of 
the diagram below with the one word: Behold! It is indeed possible to 
behold that the area of the big square is (x + y)2 = X2 + 2xy + y2 , and it 
is also the sum of the areas of the small square and the four triangles, 
Z2 + 4(1/2xy) = Z2 + 2xy , so it follows that Xi + y2 = Z2. 

y x 

y 
x z 

z 

z 
x 

z 
y 

x y 

James Garfield constructed a proof before he was President of the 
United States; mathematical knowledge is thus not a disqualification 
for high office. A right triangle whose sides are integers we will call a 
Pythagorean triangle . (Strictly speaking, the sides are not integers; they 
are line segments whose lengths are denoted by integers, but no con­
fusion should arise.) The problem of finding all Pythagorean triangles 
is the same as that of finding all solutions in positive integers of 

( 1 ) 

The ancient Babylonians could find some of the solutions ; we will 
determine them all. There is an immense literature on Pythagorean 
triangles, and Schaaf [ 1 5] and Beiler [2] have references to some of it. 

Note first that we may assume that x and y are relatively prime. 
Suppose not: let x2 + y2 = Z2 and (x, y) = d. Then dJz , and 

(;:/d )2 + (y/d )2 = (zld )2 , 

and we also know that (x/d, y/d ) = 1 .  This shows that any solution of (1) 
may be derived from a solution in which the terms on the left are 
relatively prime, by multiplication by a suitable factor. Thus when we 
find all solutions ob2 + y2 = Z 2 with (X ,  y) = 1 ,  we will be able to find all 
solutions of x2 + y2 = Z2 . 
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'" Exercise 1 .  If � ,  y) = 1 and x 2  + yZ = Z 2 ,  show that (y ,  z) = � , z ) = 1 .  

We will call a solutionx = a , y  = b , z  = C ofx 2 + y2  = Z 2 in which a ,  b ,  
and c are positive and (a, b )  = 1 a fundamental solution. From Exercise 
1 it follows that if a ,  b ,  c is a fundamental solution, then no two of a ,  b ,  
c ,  have a common prime factor. 

Lemma 1.  If a, b ,  c is a fundamental solution of x2 + y2 = Z 2 ,  then 
exactly one of a and b is even. 

Proof. The integers a and b cannot both be even in a fundamental 
solution . 

* Exercise 2. Why not? 

Nor can a and b both be odd. Suppose that they were. Then a2 ... 1 (mod 
4) and b2 "'" 1 (mod 4) . Thus 

c2 = a 2 + b2 "'" 2 (mod 4) , 

which is impossible. The only possibility left is that one of a and b is · 
even and the other is odd. 

Corollary. If a ,  b, c is a fundamental solution ,  then c is odd. 

Proof. a2  + b2 "" 1 (mod 2) . 

Before we proceed to derive an expression for all the fundamental 
solutions of ( 1 ) ,  we need to. prove 

Lemma 2. If r2 = sf and (s , t )  = 1 ,  then both s and t are squares . 

Proof. Write out the prime-power decompositions of s and t :  

s = Ple'PZ'" . . .  Pke,. 
t = q/'q/' " . q/'.  
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From (s, t) = 1 ,  it follows that no prime appears in both decomposi­
tions . Because of the unique factorization theorem, the prime-power 
decomposition of r2 can be written 

and the V' s and q ' s  are distinct primes.  Since r2 is a square, all of 
the exponents e1 , e2 > . . .  , eb fl , fz, . . .  , fj  are even. Thus s and t 
are squares .  

Exercise 3 (optional). Prove Lemma 2 by induction on r as follows .  
The lemma i s  trivially true for r = 1 and r = 2 .  Suppose that it is 
true for r ::;; n - 1 .  Note that n has a prime divisor v, and V I s or 

V I t , but not both. Also, p2 lnz. Apply the induction assumption to nip. 

• :, Note that it is impossible to conclude from r2 = st that s and t are 
squares if s and t are not relatively prime. For example, 62 = 18 · 2 , but 
neither 18 nor 2 is a square. 

The next lemma gives a condition that fundamental solutions of ( 1 )  
must satisfy. 

Lemma 3. Suppose that a, b; c is a fundamental solution ofx2 + y2 = Z2 ,  
and suppose that a i s  even. Then there are positive integers m and n 
with m > n ,  (m , n)  = 1 and m � n (mod 2) such that 

a = 2mn , 
b = m2 - n2, 
c = m2 + n2 •  

(Note that w e  lose no generality i n  assuming that a is even. Lemma 1 
tells us that exactly one of a and b is even, so we may as well call the 
even member of the pair a ,  b by the name of a . )  

Proof. Since a is even, a = 2r for some r .  So, a '.! = 4r2 ; from 
a Z = c2  - b 2  follows 

(2) 4r2 = (c + b)(c - b) .  
We know that b i s  odd, and from the Corollary to Lemma 1 ,  we know 
that c is odd too. Thus c + b and c - b are both even. Thus we can put 

(3) c + b = 2s and c - b = 2t. 
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Then 

(4) c = s + t and b = s - t . 

Substituting (3) into (2) ,  we get 4r2 = (2s)(2 t ) , or 

,.2 = sl . 

If s and t are relatively prime, we can apply Lemma 2 and conclude that 
s and t are both squares .  In fact, s and t are relatively prime, as we now 
show. Suppose that d i s and d I t .  From (4) it follows that d I b and d i e .  
But from Exercise 1 ,  w e  know that b and c are relatively prime. Hence 
d' = ± 1 and (s, t) = 1 .  Lemma 2 says that 

and 

for some integers m and n ,  which we may assume to be positive. Thus 

a 2  = 4r2 = 4st = 4m2 n 2  

or  a = 2mn .  From :4) ,  

c = s + t = m 2  + n 2 ,  

b = s  - /  = m 2  - n 2 • 

Having established the last three equations,  we need now only estab­
lish that m > n ,  (m , n) = 1 ,  and m ofr- n  (mod 2) to complete the proof. 
The inequality follows because b is part ol ii-fundamental solution and 
hence positive. 

Exercise 4. Suppose that d im and d i n .  Show that d I a and d l b . Con­
clude that (m , n) = 1 .  

Exercise 5. Suppose that m "'" n "" 0 (mod 2 ) .  Show that a and b are 
both even, which is impossible. 

Exercise 6. Suppose that m ... n "'" 1 (mod 2) . Show again that a and b 
are both even. 

Exercises 4 , 5,  and 6 have completed the pro0f of 
Lemma 3 .  For example ,  3 3 ,  56, 65 is a fundamental 
solution, since 1089 + 3 136 = 4225, and from r2 = 
(5612)2 = 282 = 7" .42 we get m  = 7 and n = 4. They 
are the right values, since m2 - n2 = 49 - 1 6  = 3 3  
and m 2  + n 2  = 4 9  + 16 = 65. 33 
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We have shown that if a ,  b ,  c is a fundamental solution, than a ,  b ,  and 
c satisfy the conditions of Lemma 3 .  It is also true that if a ,  b ,  c satisfy 
the conditions of Lemma 3 ,  then a ,  b ,  c is a fundamental solution of 
x2 + y 2  = Z 2 .  We prove this in 

Lemma 4. If 

a = 2mn , 
b = m2 - n2, 
c = m2 + ni, 

then a,  b, c is a solution of x2 + y2 = Z2 . If in addition, m > n, m and 
n are positive, (m , n )  = 1 ,  and m �n (mod 2), then a, b, c is a 
fundamental solution. 

Proof. To see that a ,  b, c is a solution is a matter of computation: 

a2 + b2 =--(1:mnr + (m2 - n2)2 
= 4m2n2 + m4 - 2m2n2 + n4 = m4 + 2m2n2 + n4 
= (m2 + n2)2 = ct . 

It remains to show that (m , n )  = 1 and m � n  (mod 2) imply that 
(a, b )  = 1 .  Suppose that p is an odd prime such that pi a and pi b .  
From c2 = a2 + b2 it follows that pi c .  From pl b and pi c it follows 
that p i (b + c) and p i (b - c) .  But 

b + c = 2m2 and 

So, p i 2m2 and p1 2n2.  Since p is odd, this implies that pl m2 and 
p l n2, and hence that pl m and pi n .  Since m and n are relatively 
prime, this is impossible. The only way in which a and b could fail 
to be relatively prime is for both to be divisible by 2 .  But b is odd 
tecause b = m2 - n2, and one of m, n is even and the other is odd. 
Thus (a, b )  = 1 ,  and because m > n, b is positive. Because m and n 
are positive, a is positive. Thus a, b, c is a fundamental solution. 

We restate Lemmas 3 and 4 as 

Theorem 1 .  All solutions x = a, y = b, Z = c to x2 + y2 = Z2 ,  where 
a, b, c are positive · and have no common factor and a is even, are 



given by 

a = 2 mn,  

b = m2 - n2 , 
C = m2 + n2 , 
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where m and n are any relatively prime integers, not both odd, and 
m > n .  

Here is a table of some fundamental Pythagorean triangles with small 

sides:  

m n a b c ., a- b2 c2 

2 1 4 3 5 16  9 25 "!" 3 2 12  5 13 144 25 169 
" c 4 1 8 15 17 64 225 289 
jeJ 4 3 24 7 25 576 49 625 

:c � r, 5 2 20 21 29 400 441 841 
1 ';'-::' 5 4 40 9 41 1600 8 1  168 1  
i in 6 I 12  35 37 144 1225 1369 
':� ">i7 2 28 45 53 784 2025 2809 

Problems 

*' 1 .  There are eleven nonfundamental Pythagorean triangles with hypotenuses 
less than 50; find them. 

2 .  Find a fundamental Pythagorean triangle with hypotenuse 265 . 

" 3 .  Find a fundamental Pythagorean triangle with leg 1 00.  

4 .  How many Pythagof\;l-a:1J triangles (fundamental or not) can you find with 
hypotenuse 1 105? 

5 .  If (a , b) = d and at + bt = c t ,  show that (a , c) = (b , c) = d. 

6 .  If (a , b) = 1 and ab = c /I ,  show that a and b are n th powers . 

7 .  If (a , b) = d and ab = c " , show that aid and bid are not necessarily n th 
powers. 

8 .  Bhascara (ca. 1 150) found a right triangle whose area is numerically equal 
to the length of its hypotenuse . Show that this cannot happen if the triangle 
has integer sides. 

*' 9. In all of the Pythagorean triangles in the table in the text, one side is a 
multiple of five. Is this true for all Pythagorean triangles? 

10.  Show that 12 divides the product of the legs of a Pythagorean triangle. 

1 1 .  Show that 60 divides the product of the sides of a Pythagorean triangle. 
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1 2 .  Here is a quadrilateral, not a parallelogram, 
with integer sides and integer area: 
(a) What is its area? 
(b) Such quadrilaterals are not common; 

can you find another? 
(c) Could you find 1 ,000,000 more? 

7 

20 

1 5  
* 1 3 .  Find all fundamental Pythagorean triangles whose areas are twice their 

perimeters. 

14.  Find all fundamental Pythagorean triangles whose areas are three times 
their perimeters. 

t 1 5 .  Prove that 3 , 4, 5  is the only solution ofx� + y2 = Zi in consecutive positive 
integers. 

1 6 .  Show that the only Pythagorean triangles with sides in arithmetic progres­
sion are those with sides 3n , 4n , 5n , n = 1 , 2 , 3 ,  . . . .  

t 1 7 .  3' + 4t = 5:1. 5:1 + 1 2:! = 1 31. 71 + 24t = 25t. 9:! + 401 = 4 P .  

(a) Guess a theorem. 
(b) Prove that the numbers in .  (a)  give the only Pythagorean triangles with 

consecutive integers for one leg and a hypotenuse . 

18.  (a) Look in the table in the text and find two Pythagorean triangles with 
the same area. 

(b) Can you fi nd  two others with the same area? 
(c) Prove that two Pythagorean triangles with the same area and equal 

hypotenuses are congruent. 

1 9 .  Show that fl '  + (n + If = 2 m t  is impossible. 
20. (a) 31 + 42 = st. 20t + 2 P  = 292• 1 1 9" + 1 201 = 169" . To find another such 

relation, show that if a� + (a + If = c" , then 

(30 + 2c + I)' + (3 a + 2c + 2)2 = (4a + 3c + 2)2. 

(b) If a' + (a + 1 )2 = c' , let u = c - a - I and v = (2a + 1 - c)/2. Show 
that v is an integer and that lI(U + 1 )12 = Vi. This shows that there are 
infinitely many square triangular numbers. 
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17 
Infinite Descent and Fermat's 

Conjecture 

In the section on Pythagorean triangles, we found all of the solutions in 
integers of x2 + y2 = Z2 .  After disposing of that problem, it would be 
natural to try the same ideas on an equation of one higher degree, 
x3 + i'l = Z3 . The same ideas would not work, nor would any others ; 
there is no solution in integers of x 3 + y3 = Z 3 .  There is one 
exception-a solution in which one of the variables is zero. We will call 
such a solution a trivial solution , treating it with the contempt it de­
serves. When we say "solution" in this section, we will mean "nontri­
vial solution." In fact, no one knows any solution in integers to any of 
the equations x II + y n = z " for n ;::: 3. Fermat thought he had a proof 
that x " + y 1'l = Z n has no nontrivial solutions when n ;::: 3; he wrote a 
note in the margin of his copy of the works of Diophantus saying that 
he had a proof, but that the margin was too small to contain it. It is 
almost certain that he was mistaken, but of course we cannot be cer­
tain. He may have had a proof. Or, he may have realized how deep the 
proof must lie and wrote the comment to keep future generations of 
mathematicians at work. Could he have been such a practical joker? It 
is not likely: Fermat was a judge, and judges tend to be sober and not 
given to pranks. 

The statement "xR + y1'l = z" has no nontrivial solutions if n ;::: 3" is 
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often called "Fermat's Last Theorem" -to distinguish it  from the 
theorem that bears his name (see Section 6), but a better name would 
be Fermat's Conjecture . An enormous amount of work has been de­
voted to it, but it is still not settled one way or the other. The conjecture 
is known to be true for n < 25,000 and for many larger values of n ,  but 
this is far from a proof. Before the First World War, there was a large 
prize offered in Germany for a correct proof, and many amateurs of­
fered attempted solutions . It is said that the great number theorist 
Landau had postcards printed which read, "Dear Sir or Madam: 
Your attempted proof of Fermat' s  Theorem has been received and 
is herewith returned. The first mistake is on page ___ , line 
___ . " Landau would give them to his students to fill in the missing 
numbers .  Even though there is no longer a prize for the solution, math­
ematical amateurs still attempt proofs, and many convince themselves 
that they have succeeded. They then try to convince mathematicians, 
fail, and sometimes become quite bitter about what they think is a 
conspiracy of mathematicians to keep them from getting the recogni­
tion due them. It is sad. Besides amateurs,  many powerful mathe­
maticians have worked on the problem, and it may be that Fermat's 
Conjecture is forever undecidable one way or the other. There may 
exist a solution of x U + y " = Z /I in numbers so large that no one could 
ever find them. There are, after all, integers so big that the world could 
not hold them if they were written out. If they take up that much room, 
can they fit into the head of man? 

The object of this section is to show that Fermat's  Conjecture is true 
for n = 4, and in so doing, to illustrate Fermat' s method of infinite 
descent. You might wonder why we avoid considering the case n = 3 .  It 
turns out to be harder to show that x3 + y3 = Z3  has no solutions than it 
is to show that x4 + y4 = Z4 has none, though it is also possible to apply 
the method of infinite descent when n = 3 .  We will prove 

Theorem 1 .  There are no nontrivial solutions of 

Note that this implies that there are no solutions of x4 + y4 = z\ if 
a ,  b , c were a solution to that equation, we would have a4 + b4 = (C2)2 , 
contrary to Theorem 1 .  
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Proof. We will apply Fermat's method of infinite descent. Consider the 
nontrivial solutions of X4 + y4 = Z2 . We want to show that there are 
none. We will suppose that there is one and deduce a contradjction. 
Among the nontrivial solutions, there is one with a smallest value of z 2 .  
Let c2 denote this value ofz 2.  There may be several solutions with this 
same value ofz ; if there are, we will pick any one of them-it makes no 
difference which.  Call the solution that we pick a ,  b ,  c .  The idea of the 
proof is to construct numbers r ,  s ,  t that also satisfy X4 + y4 = Z 2 ,  with 
[ 2  < c2 •  Since c2 was chosen as small as possible, it follows that the 
assumption that there were nontrivial solutions was wrong. Hence there 
are no nontrivial solutions .  This method is no mere trick ,  but is quite 
natural. It is very possible that Fermat one day set himself to the task of 
finding solutions of X4 + y4 = Z 4 ;  he may have applied various devices 
to reduce the equation in the same way we reduced the equation 
x2 + y2 = Z 2 ;  and maybe he was surprised when the result of his efforts 
was another equation of the same form , but with smaller numbers­
surprised and pleased too, because this allowed him to conclude that if 
there was a solution, then there was another smaller solution, and then 
another and another and another: an infinitely descending chain of so­
lutions .  But since we may assume that x, y, and z are positive, this is 
impossible. (On the other hand, Fermat may have sat down and 
thought, " I  will now apply my method of infinite descent to 
X4 + y4 = Z4" ; history is silent on the subject.) 

We suppose that we have a nontrivial solution a, b, c, with c2 as small 
as possible. We can suppose that a and b are relatively prime. Suppose 
not. Then there is a prime p such that p / a and p / b, and hence p2 / c .  
Thus (alp)4 + (blp)4 = (c/p2)2 provides a solution to X4  + y4 = Z 2  with a 
smaller value of Z 2  than c2, and we have supposed this to be impossible. 

" Exercise 1. Show that a and b cannot both be odd. (Consider a4 + b4 = 

c2 modulo 4.)  

B ecause (a, b) = 1 ,  a and b cannot both be even, either . Thus one is  
even , and look at b2 = m 2  - n2 modulo 4 .  Remember that x2  ,.. - 1  
agree to call the even member of the pair a ,b  by the name of a .  But now 
we have a fundamental solution ofx2 + y2 = Z2 as defmed in Section 16 :  

(a2)2 + (b2)2 = c2, 

(a2,  b2) = 1, and a2 is even and b2 is odd. Hence, by Lemma 3 of 
Section 16 ,  there are integers In and n, relatively prime and not both 
odd, such that 
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( 1 )  
a'l = 2mn, 
b'J. = m2 - n2 ,  
c = m2 + n2• 

Exercise 2. Show that n is even. (Suppose that n is odd and m is 
even, and look at bl = m2 - n2 modulo 4 .  Remember that x2 "'" - 1  
(mod 4) is impossible. )  

Because n i s  even, i t  follows that m is odd. Put 

n = 2q. 

Then from ( 1) ,  a2 = 4 mq, or 

(2) ( a )  2 
2 = mq . 

We would like to conclude that m and q are both squares. To do 
that, we need, according to Lemma 2 of the last section, to show that 
m and q are relatively prime. 

Exercise 3. Show that (m, q) = 1 .  (Suppose not, and deduce that 
(m, n) I=- 1 .) 

So, there are integers t and v such that 

and 

Exercise 4. Verify that t and v are relatively prime. (Suppose not,  and 
deduce that (m, q )1=- 1 .) 

Exercise 5. Note that t is odd. (Suppose not, and deduce that m 
is even .)  

So far, we have found out a good many things about a, b, and c .  
We need more yet. We start with the obvious observation 

n2 + (m2 - n2) = mi. 

Substituting into this the various facts we know, namely 

n = 2q = 2 v'l. ,  

the equation becomes 
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so we have another Pythagorean triangle . Is 2 V 'I. , b ,  t2 a fundamental 

solution? It is if 2 v2 and b are relatively prime , and they are . 

* Exercise 6. Supply the reasons for the following implications: 

if p 1 2  v'l. and p 1 b,  then p i n arid p I b, 

ifp l n  and p l b,  then p l n and p l m ,  

if (m , n) = 1 ,  then (2 v2 , b )  = 1 .  

With 2 v2 even, we have a fundamental solution of x'l. + y2 = Z2 , so 

we can apply Lemma 3 of the last section to show that there are 
integers M and N ,  with (M, N) = 1 and M � N (mod 2), such that 

2 v'l. = 2MN, 
(3) b = M2 - N2, 

Thus we have v'l. = MN and (M, N) = 1 . The product of two rela­
tively prime integers is a square if and only if both integers are squares 
(Lemma 2 of the last section) , so there are integers r and s such that 

and 

From the third equation in (3) ,  we have 

(2 = (r2)2 + (S2)2 , 

or 

Here is another solution of X4 + y4 = z'l. .  It has the property that 

which is impossible, because c2 was chosen as small as possible. This 
contradiction proves the theorem . 

Here is another example of the method of infinite descent. Suppose 
that there are positive integers a and b such that 

(4) � '3 = � V j b '  

where the fraction is in lowest terms, so that (a, b)  = 1 .  From (4) , 
a2 = }h'/. , so 



140 Section 17  

3(a - b)2 = 3a2 - 6ab + 3b2 = 9bz - 6ab + a2 = (3b - a)2 , 

from which we get 

.(5) v3 = Jb - a  . 
a - b 

Since 1 < V3 < 2 ,  from (4) we have b < a < 2b or 0 < a - b < b .  
'
Thus the denominator in (5) i s  smaller than the denominator i n  (4), so 

we can start with a fraction equal to Y3 and descend through infinitely 

many others w ith smaller and smaller denominators . Since this is im­

possible, we conclude that V3 is not equal to a quotient of two integers , 

and so is irrational. 
This process can be reversed to ascend to better and better rational 

approximations to V3. If we start with 3/2 and put (3b - a )1 
(a - b )  = 312, we get alb = 9/5. Continuing, we get the sequence 3/2 , 
915, 1 217, 33/19, 45/26, . . . or 1 .5 ,  1 .8 ,  1 . 7 14 ,  1 .737, 1 .73 1 ,  
converging to yJ = 1 .732050808 . . . .  

Problems 

1 .  Use the method of the text to show that vii is irrational if n is not a perfect 
square . 

2. Why does the method of the text fail to show that vii is irrational if n is a 
perfect square? 

*t 3. Does x8 + yB = z:5 have nontrivial solutions? 

4.  Use the method of infinite descent to show that X3 + 3y3 = 9z3 has no 
nontrivial solutions. 

" 5 .  Generalize: does Xl + py3 = p2z:3 have nontrivial solutions? 

6. Generalize: does X4 + py4 + p2Z4 = p3W' we have nontrivial solutions? 

* 7. Generalize: does XI"  + PX2" + P2X3" + . . .  + p"-2X"_I" = p"-'x,," have non­
trivial solutions? 

8. Show that Xi + y2 + Z2 = 2xyz has no nontrivial solutions . 

,. 9. For what values of k does the method used in solving Problem 8 show that 
there are no nontrivial solutions to x2 + y2 + Z2 = kxyz? 

10.  Show that there are no nontrivial solutions to Xi + y2 = x2y2 or Xi + y2 + Z2 
= x2y2 .  
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18 
Sums of Two Squares 

Among the integers from 1 to 99, the following 57 are not representable 
as the sum of two squares of integers: 

3 6 7 1 1  12 14 1 5  19  21 22 23 
24 27 28 30 3 1  33 35 38 39 42 43 
44 46 47 48 5 1  54 55 56 57 59 60 
62 63 66 67 69 70 7 1  75 76 77 78 
79 83 84 86 87 88 9 1  92 93 94 95 
96 99 

But the remaining 42 are: 

1 2 4 5 8 9 10 1 3  1 6  17  1 8  
20 25 26 29 32 34 36 37 40 41 45 
49 50 52 53 58 6 1  64 65 68 72 73 
74 80 8 1  82 85 89 90 97 98 

It would be an exercise of your inductive powers to look at these lists 

and, in the spirit of the scientific method, try to formulate a hypothesis 

that would explain the presence of a number on its list and which could 
be used to predict results for numbers greater than 99. There is a fairly 
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simple property (other than not being representable as a sum of two 
squares) that the numbers in the first list share. It is not to your dis­
credit if you cannot observe what it is , since probably only one mind in 
a million would have the power and training necessary to see it; but 
once one mind sees it; others can understand it, see why it is so , 
appreciate it, and apply it. It is 

Theorem 1. n cannot be written as the sum of two squares if and only if 
the prime-power decomposition of n contains a prime congruent to 3 
(mod 4) to an odd power. 

Proof (of the "if" part) . Suppose that p is a prime, p � 3 (mod 4) , 
which appears in the prime-power decomposition ofn to an odd power. 
That is, for some e :2:: 0, p2e+l \ n and p2e±2Jn .  Suppose that n = x2 + y2 
for some x and y .  We will deduce a contradiction-namely that - 1 is a 
quadratic residue (mod p).  Let d = (x, Y) ,  Xl = x/d, Yl = y/d, and n l  = 
n/d2 • Then 

( 1) and 

If pi is the highest power of p that divides d, then nl is divisible by 
pU-2f+l, and this exponent, being odd and nonnegative, is at least one. 
Thus p \n l l  and if p lx l '  it follows from ( 1 )  that p \YI .  But (x l '  Y I )  = 1 ,  so 
pJxl •  Hence there is a number u such that 

XIU � YI (mod p). 

Thus 

(2) 0"", nl �X12 + YI2 sXl2 + (UXI )2 "' XI2(1 + u2)(mod p). 

Since (x I ,  p) = 1 ,  X I may be cancelled in (2) to give 

1 + u2 ;;;;: 0 (mod p). 

This says that - 1  is a quadratic residue (mod p), which is impossible, 
since p "'" 3 (mod 4). Hence n = X2 + y2 is impossible , and the easy part 
of the theorem is proved. 

The rest of Theorem 1 (the "only if" part) is harder. We will need 
four lemmas . 

Lemma 1 .  (a2 + b2)(e2 + d2) = (ae + bd)2 + (ad - be)! for any integers 
a, b, e, and d. 

Proof. Multiply it out. 
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The result shows that if two numbers are representable as sums of 
two squares, then so is  their product. Rather than "n is representable 
as the sum of two squares of integers," we will say "n is represent­
able" for short. 

Lemma 2. If n is representable,  then so is Pn for any k. 

Proof. If n = x2 + y2 , then k2n = (kx)2 + (ky)2. 

Lemma 3. Any integer n can be written in the form 

where k is an integer and the p' s are different primes . 

Exercise 1. Convince yourself that this is so by considering the prime­
power decomposition of n .  

A s  an example of the application of Lemmas 1 and 2, we can get a 
representation for 260 = 22 . 5 . 1 3  from the representations 

and 

From Lemma 1 ,  
65 = 5 ·  1 3  = (22 + P)(32 + 22) 

= (2 · 3 + 1 · 2)2 + (2 · 2 - 1 ·  3 )2 = 82 + }2 .  

Hence 

'" Exercise 2. Write 325 as a sum of two squares . 

Exercise 3. If the prime-power decomposition of n contains no prime p, 
p � 3 (mod 4) , to an odd power, then note that 

or 

for some k and r ,  where each p is congruent to 1 (mod 4) . 

Exercise 3 and Lemmas 1 and 2 show that to prove the rest of 
Theorem 1 ,  it is sufficient to prove 
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Lemma 4. Every prime congruent to 1 (mod 4) can be written as a sum 
of two squares. 

Proof. The idea of the proof is this :  if P "" 1 (mod 4) , then we show that 
there are integers x and y such that 

x2 + y2 = kp  
for some integer k, k 2: · 1 . If k > 1 ,  we then construct from x and y new 
integers x 1 and y 1 such that 

Xl
! + Y12 = kiP 

for some k 1 ,  with k 1 < k . This is the step that proves the lemma, be­
cause if kl > I , we repeat the process to get integers Xz and Y2 such 
that X2

2 + Y22 = k'lP with k'J. < kl •  If we keep on, we will get a descend­
ing sequence of positive integers, k > kl > k2 > . . . , which cannot be 
infinite: it must eventually reach 1 .  When it does, we have a represen­
tation of p as a sum of two squares .  

First we show that we can find x and Y such that x2 + y2 = kp for 
some k, k 2: 1 .  Since p "" 1 (mod 4), we know that - 1  is a quadratic 
residue (mod p) ; hence there is an integer u such that u2 "'" - 1 (mod p) .  
That is , p i (u2 + I ) ,  or 

UZ + 1 = kp 

for some k, k ;::: · 1 .  Hence x 2 + y2 = kp always has a solution for some 
k, k 2: 1 ;  in fact, we can take Y = 1 . For example, if p = 17, we have 
42 + P = 1 · 17 ;  if p = 29, 122 + F = 5 · 29. The number u can be 
found by trial (we can write kp - 1 for k = 1 ,  2, . . . , and continue 
until we come to a square) , or we can use the fact that 

( ( p - 1) ) 2 _ -- -2- ! ,.,.. - 1  (mod p). 

The last congruence (which follows from Wilson' s Theorem) gives a 
construction for u :  a long one, perhaps , but one which guarantees a 
result. 

We now show how to construct Xl and Y l .  Define r and s by 

(3) r E X  (mod k) ,  s ;;;;;; Y (mod k), 

From (3) , 

r2 + S2 ... x2 + y2 (mod k) . 

But we had chosen x and Y such that x 2 + y2 = kp . Hence 
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(4) 
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for some k1 • It follows from (4) that 

(r2 + S2)(X2 + y2) = (k1k)(kp) = kjPp. 

From Lemma 1 ,  however, we have 

Thus 

(5) (rx + sy)2 + (ry - sx)2 = k1k2p . 

Note that from (3), 

rx + sy � ,.2 + S2 "" 0 (mod k) 

and 

ry - sx "'" rs - sr ... 0 (mod k) . 

Thus k2 divides each term on the left-hand side of (5); dividing (5) by P, 
we get 

( rx � SYf + (ry � sxr = kIP , 

an equation in integers . Let X l  = (rx + sy)/k and Yl = (ry - sx)/k . Then 
X12 + Yl2 = kIP, and the lemma will be proved when we show that 
kl < k. The inequalities in (3) give 

r2 + S2 � (k12)2 + (k/2)2 = P/2 . 

But 

Thus klk :S k2/2 or kl :S k/2 . Hence kl < k, and to complete the proof of 
the lemma, we need only to note that kl � 1 . If kl = 0, then from the 
last equation, r = s = 0 . It follows from (3) that k lx and k l y .  Thus k ip, 
so k = 1 or p. If k = 1 ,  then x2 + y2 = P and the lemma is proved, and if 
k = p, then u2 + 1 = p2 , which is impossible. 

Let us take an example. Starting with 122 + 12 = 5 · 29, we will carry 
through the calculations of the lemma to get a representation of 29 as a 

sum of two squares .  We have x = 12;y = 1 ,  and k = 5 .  We have r ""  12 
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(mod 5) and s ;;;;; 1 (mod 5) ; choosing r and s in the proper range, we get 
r = 2 and s = 1 .  Then 

52 . 29 = (22 + 12)(  1 22 + F) = (2 · 1 2  + 1 ·  1 )2 + (2 · 1 - 1 ·  1 2)2 

= 252 + 102 • 

Dividing by k'l = 25 gives 29 = 52 + 22 , the desired representation. 

Exercise 4. Try the calculation for 232 + 12 = 10 · 53. 

We will end with some remarks on diophantine equations closely 
related to the sum of two squares .  We have completely solved the 
problem of representing integers as the sum of two squares: we know 
which integers can be so represented, and Lemma 4 ,  combined with 
earlier lemmas, gives a method for actually calculating the representa­
tion. It is natural now to wonder about the representations of integers 
as the sum of three squares . We would expect that more integers can be 
represented when we have an extra square to add, and this is the case. 
It is a fact that n can be written as a sum of three squares ,  unless 
n = 4e(8k + 7) for some integers e and k .  So, the numbers smaller than 
100 which cannot be written as the sum of three squares are 

7 ,  15 , 23 , 28, 3 1 , 39, 47 , 55 , 60, 63 , 7 1 , 79, 87, 92, 95; 

a total of 1 5 ,  as against 57 when only two squares were allowed. There 
are even fewer exceptions if we look at sums of four squares ; in fact, 
there are none at all. Every integer can be written as a sum of four 
squares, as we will show in the next section. 

That would seem to settle the squares . That is , as far as the mere 
representation is concerned. Of course, there are many, many other 
questions that can be asked, and some that can be answered. For 
example, how many representations does an integer have as a sum of 
two squares? What is the sum of the number of solutions ofx2 + y2 = n2 
for n = 1 ,  2, . . . , N? And so on; as soon as one question is settled ,  
others crowd i n  t o  take its place. What about cubes? I t  is true that 
every integer can be written as a sum of nine cubes . No one knows 
what the corresponding number is for the sum of fourth powers (though 
it is known that every integer greater than 1 010"" is a sum of 19 fourth 
powers) , but the answer is known for fifth, sixth, seventh, and almost 
all higher powers-for example, 37 fifth powers will do. Let g(J<) be the 
least value of s such that every integer can be written as a sum of no 
more than s kth powers.  The problem of finding g(J<) is called Waring's 
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Problem, after a mathematician who wrote in 1770 that every integer 
was the sum of 4 squares, 9 cubes, 19  fourth powers, and so on. He was 
just guessing; it was not until 1909 that David Hilbert proved that the 
number gfk) existed for each k ,  and even then almost nothing was 
known about its size for large k. Now gfk) can be determined for all 
values of k ,  except for k = 4 .  For all k, 1 :s; k :5 200000, except k = 4, 
g(k) = 2'" + [(3/2)k] - 2, and it is strongly suspected that this formula is 
true for all k 2: I .  (The notation [(3/2)k] denotes the largest integer less 
than (3/2)"', so for example [(3/2)3] = [27/8] = 3 .) 

Not every integer needs nine cubes to represent it: in fact, only 23 

and 239 require so many. The largest integer that needs eight cubes is 
454, and if you make a table of representations of integers as sums of 
cubes, you will see, as did Jacobi when he made one by hand in 1 85 1 ,  
that the number of integers requiring seven cubes decreases as the size 
of the integers increase. Numbers like 23, 239, and 454 are only annoy­
ing exceptions: of more interest than g(k) is G(k), the least value of s 
such that every sufficiently large integer can be written as a sum of no 
more than s kth powers . It is known that G(2) = 4, and it is curious that 
the only other value of k for which G(k) is known is 4,  the only small 
value of k for which g(k) is known . G(4) = 16,  and the most that is 
known about other k are upper bounds: G(3) :5 7 and G(5) :5 23 , for 
example .  The most that is known in general is that k + 1 :s; G(k) :5 k (3 
In k + 1 1) ,  and the right-hand inequality is extremely difficult and 
complicated to prove. Work on Waring's  Problem continues today. 

As it does on another famous problem about representing integers as 
sums of certain other integers: Goldbach's Conjecture. In 1 742, an 
amateur mathematician named Goldbach noted that 

4 = 2 + 2 ,  

12  = 7 + 5,  

6 = 3 + 3 .  

14 = 7 + 7,  

8 = 5 + 3 ,  10  = 5 + 5,  

1 00 = 97 + 3 , 

and guessed that every even integer greater than two could be written 
as the sum of two primes . He asked Euler if he could prove it. Euler 
failed, and no one since has succeeded. The conjecture is almost cer­
tainly true-large even integers have thousands of representations­
and it is infuriating that it cannot be proved. The most powerful tools of 
number theory have been applied, but they have given only partial 
results, such as that every sufficiently large even integer is the sum of 
no more than four primes, or is the sum of a prime and an integer that 
has no more than two different prime factors, or that every even integer 
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greater than two is a sum of no more than 20000000000 primes . The 
course of human history will not be altered much if Goldbach's Conjec­
ture is settled one way or the other, but it would be nice to find out. 

Problems 

* 1 .  Detennine which of 1 980, 198 1 ,  1 982 , 1983 , and 1 984 can be written as a 
sum of two squares, and for those that can, find a representation. 

2 . Determine whiCh of 2000, 2001 ,  2002, 2003, and 2004 can be written as a 
sum of two squares, and for those that can, find a representation. 

*' 3. Use Lemma 1 to find all eight of the representations 002045 = 5 ·  13 . 1 7 · 29 
as sums of two squares. 

4. Use Lemma 1 to get two representations of 4453 as a sum of two squares . 
5 .  Prove that if n "" 3 (mod 4) , then n cannot be represented as a sum of two 

squares . 

6. What can n be congruent to (mod 9) if n is a sum of two squares? 
" 7. Is it true that ifm and n are sums of two squares and m \ 1'1 ,  then nlm is a sum 

of two squares? Prove or give a counterexample. 

S. Is it true that if m and n are sums of two squares, then mn is a sum of two 
squares? Prove or give a counterexample. 

9. Fermat wrote: 
21'1 + 1 is the sum of two squares when and only when (i) n is even , and (ii) 
2n + 1 ,  when divided by the largest square entering into it as a factor must 
not be divisible by a prime 4k - 1 .  
Show that this is equivalent to Theorem 1 .  

to.  Girard wrote in 1632 that the numbers representable as the sum of two 
squares comprise every square, every prime 4k + 1 ,  a product of such 
numbers , and the double of any of the preceding. Show that this is equiva­
lent to Theorem 1 .  
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Sums of Four Squares 

In this section we will prove that every positive integer can be written 
as a sum of four squares of integers, some of which may be zero. This 
theorem is quite old. Diophantus seems to have assumed that every 
positive integer is a sum of 2, 3 ,  or 4 squares of positive integers, but he 
never explicitly stated the theorem. The fi rst to do so was Bachet 
( 1621) .  He verified that it was true for integers up to 325, but he was 
unable to prove it. Fermat said that he was able to prove it using his 
method of descent; as usual, he gave no details .  In the light of sub­
sequent work on the theorem, we may doubt that Fermat' s proof was 
complete. Descartes said that the theorem was no doubt true, but he 
judged the proof " so difficult that I dared not undertake to find it. " (It is 
hard to resist the temptation to read " so difficult that I was unable to 
find it. ") 

Euler next took up the challenge, first working on the problem in 
1730. In 1743 he noted that the product of two sums of four squares is 
again a sum of four squares, a result fundamental to the proof of the 
theorem, and indeed, he proved the theorem except for one point. In 
1751 ,  still pursuing that point, Euler proved another fundamental re­
sult, namely that 1 + x!! + y2 � 0 (mod p )  always has a solution for any 
prime p .  But the theorem was still out of his reach. Finally,  in 1770, 

]49 
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Lagrange, drawing heavily on Euler's ideas, succeeded in constructing 
a proof. In 1773 , Euler (then 66 years old) gave a 'simpler proof­
success after 43 years. 

We start by proving Euler' s two results . 

Lemma 1 .  The product of two sums of four squares is a sum of four 
squares. 

Proof. The proof is utterly trivial. Finding the result was quite another 
matter, as witness the thirteen-year gap between Euler's first attack on 
the problem and his discovery of the following identity: 

(a2 + b2 + c2 + d2)(r2 + S2 + t2 + u2) = (ar + bs + ct + duf 
+ (as - br + cu - dt)2 + (at - bu - cr + dS)2 
+ (au + bt - cs - dr)2. 

It may be veri fied by multiplication. Note that the' right-hand side, 
when multiplied out, contains all the terms a2r2; a2s2 ,  . . .  , d2u2 
that appear on the left-hand side multiplied out. Note also that it is 
not impossible to see by inspection that all the cross-product terms 
vanish. 

To show that every positive integer is the sum of four squares, it 
follows from Lemma 1 that we need only show that every prime is the 
sum of four squares . For example, from 

37 = 62 + 12 + 02 + 02 and 

we get 

2109 = 57 · 37 = (6 ' 7 + 1 · 2 + 0 · 2 + 0 · 0)2 + (6 · 2 - 1 · 7 + 0 · 0 - 0 · 2)2 
+ (6· 2 - 1 · 0 - 0 · 7  + 0 · 2)2 + (6 ' 0 + 1 · 2 - O · 2 - O · 7)2 

= 442 + 52 + 122 + 22 ; 

we can similarly decompose any integer into a product of primes and 
then get a representation of it as a sum of four squares,  if we know 
a representation of each prime as a sum of four squares. 

Lemma 2. If p is an odd prime, then 

1 + x2 + y2 � 0 (mod p) 

has a solution with 0 :5  X < pl2 and 0 S Y < pI2. 

Proof. The numbers in 
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S 1 = { ()2, J 2 ,  22, • • • , ( p � If} 
are distinct (mod p), as are the numbers in 

S2 = { -'
1 - 02 ,  - 1 - JlI, - 1 - 22 ,  . . .  , - 1 - (p � If} · 

SI and S2 contain together (p - 1 )12 + 1 + (p - 1)12 + 1 = P + 1 
numbers. Since there are only p least residues (mod p), we must have 
one of the numbers in SI congruent to one of the numbers in S2 : 

. X2 � - 1  _ y2 (mod p) 

for some x and y,  and 0 :5 X :5 (p - 1)12, 0 s y s (p - 1)12 . 

For example, take p = 17. The numbers in SI are 1 , 4 , 9, 16 , 25, 36, 

49, 64, and the numbers in Sz are - 1 ,  -2, -5, - 10,  - 17 ,  -26,  -37 ,  

-50, - 65 .  Their least residues (mod 17) are 

0, 1 , 4 , 9, 16 , 8, 2 ,  1 5 ,  1 3  and 16,  IS ,  12 ,  7 ,  0, 8 ,  14 ,  1 ,  3 ; 

the sets have not one but five elements in common, namely 0, I ,  8 ,  IS,  
and 16.  They give five solutions, three of which are distinct: 

1 + 02 + 42 "'" 1 + P + 72 � 1 + 52 + 52 "'" 1 + ?2 + 12 ... 1 + 42 + 02 

""" 0 (mod 17). 

To show that every positive integer is the sum of four squares, we use 
the same method of proof as was used to prove the theorem on integers 

that are the sum of two squares .  We express some multiple of p as a 
sum of four squares and then construct a smaller multiple of p, also the 
sum of four squares .  Repeating the process often enough will give p as a 
sum of four squares,  and that is all we need. Since 2 = J2 + 12 + ()2 + 
02, the case p = 2 is settled, and we can assume hereafter that p is an 

odd prime. 

Lemma 3. For every odd prime p, there is an integer m, m <p ,  such 
that 

has a solution. 
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Proof. From Lemma 2 we know that there are x and y such that 

mp = X2 + v2 + 12 + 02 

for some m .  Since 0 � x < p12 and 0 � y < p/2, we have 

mp =X2 + y2 + 1 < p2/4 + p2/4 + 1 <p2 ,  

sO m <po  

* Exercise 1 .  From 

12 · 17 = 204 = 142 + 22 + 22 + ()2 

and 

12 · 1 7  = 204 = 132 + 52 + 32 + 12 , 

find representations of 3 ·  17 as sums of four squares . 

Lemma 4. If m and p are odd, 1 < m < p, and 

then there is a positive integer k [  with kl < m such that 

kIP = X12 + Yl2 + Z12 + Wl2 
for some integers Xl ,  y[ ,  Z [ ,  WI '  

Proof. As in  the two-squares theorem, we will construct x [ ,  YI,  Z[ ,  W[  
from x ,  y, z ,  w .  First note that we can suppose that m is odd. If  m is 
even, then x, y, z, W are all odd, all even, or two are odd and two are 
even. In any event, we can rearrange tht;. terms so that 

' 

X "'" Y (mod 2) and Z ... W (mod 2). 

Hence 

mp _ ( X - y) 2 ( X + y) 2 (z - W) 2 ( Z + W) 2 
- - -- + -- + -- + -- . 

2 2 2 2 2 

If ml2 is even, we can repeat the process and express (m/4)p as a sum of 
four squares.  Since m i= 0, eventually we will have an odd multiple ofp 
written as a sum of four squares .  For example,  from 

172 · 1 97 = 8 12 + 852 + 932 + 1072 
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86 · 1 97 = 22 + 832 + ?2 + 1002 

43 · 197 = 492 + 512 + 382 + 452 • 

Now choose A, B, C, and D such that 

A "" X, B "" y, C "" Z, D "'" w (mod m).  

and such that each lies strictly between -inl2 and m12 .  We can do this 
since m is odd. It follows that 

A2 + B2 + C2 + D � x2 + y2 + Z2 + w2 (mod m) ,  

so 

for some k .  Since 

A2 + BZ + C2 + D2 < m2/4 + m2/4 + m2/4 + mZ/4 =  m2, 

we have 0 < k  < m .  (If k = 0, then m divides each of x, y, Z, and w ,  so 
m2 lmp. TIlls is impossible, because 1 < m  < p . )  Thus 

m2kp = (mp )(km ) = (x2 + y2 + Z2 + w2)(A 2 + B2 + C2 + D2), 

and from Lemma 1 we have t 

m2kp = (xA + yB + zC + wDr + (xB - yA + zD - wC)Z 

+ (xC - yD - zA + w Bf- + (xD + yC - zB - wA )2 . 

The terms in parentheses are divisible by m :  

xA + yB + zC + wD "" x2 + y2 + Z2 + w2 "" 0 (mod m) ,  

xB - yA + zD - wC """ xy - yx + zw - wz "'" 0 (mod m),  

xC - yD - zA  + wB = XZ - yw - zx + wy ... 0 (mod m) ,  

xD + yC - zB - wA ""' XW + yz - Zy - wX "'"  0 (mod m ) .  

So, if  we put 

Xl = (xA + yB + ZC + wD)/m , 

Zl = (xC - yD - zA + wB)lm , 

then we have 

YI = (xB - yA + zD - wC)/m , 

WI = (xD + yC - zB - wA )/m , 

Xl! + Y/ + ZIZ + Wl2 = (m2kp )/m2 = kp . 

Since k < m ,  the lemma i s  proved. 
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Theorem 1. Every positive integer can be written as the sum of four 
integer squares. 

Proof. Suppose that n = P le'P2e, • • .  p{'. Starting with Lemma 3 ,  re­
peated application of Lemma 4 gives a solution of Pi = x2 + y2 + Z2 + w2 

for each i .  From Le
'
mma 1 ,  we can write p/' as a sum of four squares for 

each i .  Applying Lemma 1 again (k times) , we can get a representation of 
Ple'P2e, . . .  pice" as a sum of four squares. 

Problems 

'" 1 . Express 31 ,  37, 4 1 ,  43,  47 , and 53 as sums of  four squares . 

2. 
" 3 .  

4 .  

'" 5. 

6. 

7 . 
8. 

9. 

10 .  

Express I I ,  1 3 ,  17, 19 , 23 , and 29 as sums of  four squares . 

From 2 · 1 7 · 1 984 = 67456 = 256� + 4<r + 1 62 + 82 , find a representation of 
17 · 1984 as a sum of four squares.  

From 53 = 72 + 22 + 02 + ()'l and Lemma I , find a representation of 
1 8 179 = 73 . 53 as a sum of four squares. 

Use the idea in the proof of Lemma 2 to find solutions of 2 + it + y2 "" 0 
(mod 17). 
Use the idea in the proof of Lemma 4 applied to 43 ·  197 = 492 + 5 12 + 382 + 

452 to get a smaller multiple of 1 97 written as a sum of four squares . 

If 8 1 (x2 + y. + Z2 + w1), show that x, y, Z, and w are even. 

If n = x· + y2 + Z1 + w1, show that by suitable ordering and choices of sign 
we can get x + y + Z to be a mUltiple of three. 

If n = x� + y2 + Z2 + w· and x, y, z, w are nonnegative, show that 

min(x, y, z, w) :s; n 1l'l./2 :s; max(x, y, z, w) :s; n I [2 .  

1f t is even and x, y, and z have no common factor, show that t2 = x· + y� + 
Z1 is impossible. 
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The theory of diophantine equations has not been perfected. There are 

not many theorems that apply to a really wide class of equations.  
Usually, special equations are attacked with special methods, and what 

works for x3 + 3xy + y3 = z:� may be worthless for solving x3 + 4xy + y3 
= Z3 . (On the other hand, the same method might work for both.)  The 
pertect theorem would be one that would let us look at any diophantine 

equation and decide whether it had solutions. It would be even better if 

the theorem would let us decide exactly how many solutions there are, 
and better yet if it would tell us exactly what they are. 

This perfection will never be achieved. There was once hope that it 
could be approached , though. In 1994, the great German mathemati­

cian David Hilbert presented a list of 24 problems which he thought 

were worthy of the attention of twentieth-century mathematicians. 
They were in fact worthy, and the search for their solutions has turned 
up important results; see, for example, Fang [5] . Hilbert's tenth prob­

lem was to find ,  if possible,· a method which would allow us to look at a 

diophantine equation and tell if it had solutions or not. ,  It took more 
than sixty years to discover that there is no such general method that 

will work for all diophantine equations, and that it is as useless to look 
for one as it is to try to trisect angles with straightedge and compass 

155 
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alone. (Davis [4] has explained, as nontechnically as possible, 
Matusevic 's  resolution of the problem.) 

To illustrate the state the theory of diophantine equations has 

reached today, here is one of the most general theorems now known 
(general in the sense that it applies t� a larger class of equations than do 
other theorems) : 

Theorem. Let 

and suppose that F(;c, 1 )  = 0 has no repeated roots . Then the equation 

F(;c, y )  = c ,  

where c is an integer, has only finitely many solutions if n 2:: 3 .  

I n  particular, this theorem says that ax R  + by" = c has, in general, only 
finitely many solutions if n 2: 3 . What if n < 3? We have completely 
analyzed the case n = 1 in the section on linear diophantine equations, 
and, for n = 2, we considered a special case in the section on Pythago­
rean triangles . The general equation when n = 2 is too complicated for 
us to treat here. In this section, we will treat another special case: 

x2 - Ny2 = 1 ,  

where N is a positive integer. We will show that if we can find one 
solution of this equation withx > I ,  then we can find infinitely many. In 
fact, if we can find the smallest solution (the one withx > 1 as small as 

possible), then we can find aLL the solutions of the equation. 
The equation x2 - Ny'l. = 1 is commonly called Pell' s Equation. This 

is the result of a mistake made by Euler, who called it that. Euler was 
so eminent that everyone has called it that since. But Pell never solved 
the equation, and there is even doubt that he could have. The mathe­

matical historian E .  T. B ell [3 ] has written, "Pell mathematically was a 

nonentity and humanly an egregious fraud. . . . He never even saw the 
equation." Certainly, frauds and nonentities do not deserve the im­

mortality of having an equation called after them. Fermat not only saw 
the equation, he was able to sol ve some portions of it. Hence we will 
call x2 - Ny2 = 1 Fermat's Equation. 

The equation is always satisfied when x = ± 1 and y = 0, whatever 

the value of N. We will call solutions in which either x = 0 or y = 0 
trivial solutions . 
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* Exercise 1. Find, by trial, a nontrivial solution of x2 - 2i� = 1 ,  and one 
of x2 - 3 y2 = 1 .  

An efficient way to go about finding a nontrivial solution of 
x 2  - Ny2 = 1 by trial is to make a table of I + Ny! for y = 1 , 2 ,  . 
and inspect it for squares.  

In solving x2 - Ny! = 1 ,  there is  no need to consider negative values 
of N. If N :s; -2, then it is clear that the equation has only the trivial 
solutions with y = 0, because both terms on the left are nonnegative. 
For n = - 1 ,  there are also the solutions x = 0, y = :±: 1 .  These are trivial 
too. Besides supposing N to be positive, we can assume that N is not a 
square. If it is, then N = m2 for some m, and we have 

1 = x2 - m2y2 = (x - my)(x + my). 

The product of two integers is 1 only when both are 1 or both are - 1 ,  
and all the solutions can thus be quickly found by solving pairs of linear 
equations .  

" Exercise 2 (optional). Show that x = :±: 1 ,  y = 0 are the only solutions.  

We will hereafter assume that N >  0 and N is  not a square. With 
these assumptions, it is always possible to show that x2 - Ny2 = 1 al­
ways has a solution other than x = ± 1 ,  y = O. We will accept this result 
on faith and not prove it. There are two methods for proving the exis­
tence of a nontrivial solution: one depends on developing the extensive 
machinery of continued fractions, and the other (first constructed in 
1 842 by Dirichlet, who improved a proof given by Lagrange in 1766) is 
not short. 

Because 

x2 - Ny! = (x + y YN)(x - y  YN), 
irrational numbers of the form x + y vN are closely connected with 
solutions of Fermat's Equation. They also have several important 
properties, which we develop in the following lemmas. We will say that 
the irrational number 

a = r  + s VN 

(r and s are integers) gives a solution of x2 - Ny2 = 1 if and only if 
r2 - NS2 = 1 . For example,  3 + 2 y'2 gives a solution of x2 - 2y2 = 1 
and 8 + 3 v'7 gives a solution of x2 - 7y2 = 1 .  
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Lemma 1 .  If N > 0 is not a square, then 

x + y V'N = r + s YN 

if and only ifx = r and y = s. 

Proof. If x = r and y = s, then clearly x + y VN = r + s vN. It is the 
converse that is important. To prove it, suppose that x + y vN = r + 
s vN and y f=  s .  Then � r:-;  x - r 

v N = -­s - y  

is a rational number. But since N is not a square, VN is irrational. 
It follows that y = s , and this implies x = r. 

Lemma 2.  For any integers a ,  b, e , d, N, 

(a2 - Nb2XeZ - Nd2) = (ae + Nbd)2 - N(ad + be)2. 

Proof. Multiply it out. For example, (22 - 3 , 12)(72 - 3 ' 42) = ( 14 + 
3 ' 1 . 4)2 - 3(2 .4 + 1 ' 7)2 = 262 - 3 . 1 52 , and this is in fact correct: 
(4 - 3)(49 - 48) = 676 - 675. 

Lemma 3. If a gives a solution of x2 - Ny2 = 1 ,  then so does 110'. 

Proof. Let a = r + s VN. Then we know that r2 - Nsz = 1 ,  and we 
have 

1 
a 

1 r - s VN r - s VN . 1.:  
' \INN VNN 

= 2 N. 2 = r - s V N; r -t- s  r - s r - s 

since r2 + N( -sf = 1 ,  the lemma is proved. 

Lemma 4. If a and f3 give solutions of Xi - Ny2 = 1 ,  then so does af3. 

Proof. Let a = a + b vN and f3 = e + d VN. Then 

af3 = (a + b VFJ)(e + d VN) = (ae + Nbd) + (ad + be) vN 
and from Lemma 2 we have 
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(ac + Nbd)2 - N(ad + bC)2 = (a2 - Nb2)(C2 - Nd'l) = 1 ,  

and this shows that af3 gives a solution. 

* Exercise 3. Two solutions of x2 - 8y2 = 1 are (T, y) = (3 , 1) and (17,  6). 
Apply Lemma 4 to find another . 

Lemma 5. If a gives a solution of x2 - Ny2 = 1 ,  then so does ak for any 
integer k, positive, negative, or zero . 

" Exercise 4 (optional). Prove Lemma 5 .  First show that it is true for all 
k ;:::: . ,1 by applying Lemma 4 and induction. Then show that it is true for 
k :5  - 1  by applying Lemma 3. Then consider the case k = o. 

Lemma 5 shows that if we know one number a, a >  1 ,  which gives a 
solution of x2 - Ny2 = 1 ,  then we can find infinitely many, namely those 
given by ak, k = 2, 3 ,  . . . .  The solutions are all different, because 
a k+l  > air  for all k. For example, 3 + 2 V2 gives a solution of 
x2 - 2y2 = 1 .  So, then , do 

(3 + 2 Y2)2 = 17 + 1 2 V2 

and 

(3 + 2 V2f = ( 1 7  + 12 \12)(3 + 2 Y2) = 99 + 70 v'2 
and higher powers of 3 + 2 V2. 

" Exercise 5. Check that (3 + 2 Y2)2 and (3 + 2 Y2)3 give solutions of 
x'l - 2y2 = 1 .  

'" Exercise 6. a = 2 + V3 gives a solution of x2 - 3y2 = 1 .  Find two other 
nontrivial solutions. 

Lemma 6. Suppose that a, b, c, d are nonnegative and that 
a = a + b VN and f3 = c + d VN give solutions of x2 - Ny? = 1 .  Then 
a < f3 if and only if a < c. 

Proof. Suppose that a < c. Then a2 < c2 and because a2 = 1 + Nb2 and 
c2 = 1 + Nd2 we have Nb2 < NJ2. Because none of b, d, N are negative, 
it follows that b < d. Together with a < c, this gives a < f3. To prove the 
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converse, suppose that a < f3. If a � c, then a2 2= c2• From this follows · 

b2 2= d2, which implies a 2=.  f3.  Since this is impossible, we have a < c. 

Now we are in a position to describe all the solutions ofx2 - Ny2 = 1 .  
Consider the set of all real numbers that give a solution of x2 - Ny2 = 1 .  
Let () be the smallest number in the set greater than one. Note that 
Lemma 6 guarantees that there will be such a smallest element, be­
cause the members r + s VN of the set can be ordered according to the 
size of r,  which is an integer, and any nonempty set of positive inte­
gers contains a smallest element. We will call () the generator for 
x2 - Ny2 = 1 ,  and we can now prove 

Theorem 1. If e is the generator for x2 - Ny2 = 1 ,  then all nontrivial 
solutions of the equation withx and y positive are given by ()k, k = 1 ,  2 , 

Note that the restriction ofx and y to positive values loses us nothing 
essential, because nontrivial solutions come in quadruples 

{(x-, y) ,  (T, -y) ,  (-x, y), (-x, -y) } ,  

and exactly one solution has two positive elements . Note also that we 
say nothing about the existence of a generator .  It is a fact, as was noted 
earlier, that such a number can always be found. There is a method for 
getting 8 from the continued fraction expansion of VN by an easy 
calculation-easy in the sense that a computer would make light work 
of it. For some values of N, the computation is quite tedious . Of 
course, a generator can be found by trial, and for a long time, this was 
the only method available. In the seventh century, the Indian mathe­
matician Brahmagupta said that a person who can within a year solve 
x2 - 92y2 = 1 is a true mathematician. Perhaps, and perhaps not; but 
such a person would at least be a true arithmetician, because the 
generator is 1 15 1  + 120 \1'92. Solution by trial can also be difficult for so 
innocent-seeming an equation as x2 - 29y2 = 1 ; its smallest positive 
nontrivial solution isx = 9801 andy = 1820. The equation x2 - 61y2 = 1 
has no positive nontrivial solution untiIx = 17663 19049, y  = 226 153980. 
You can verify that this is a solution by multipljcation, if you wish. 

Proof of Theorem 1. Let x = r, y = s be any nontrivial solution of 
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x2 - Ny! = 1 with r > 0 and s > O. Let a = r + s YR. We want to show 
that a = fJ'< for some k. We know that a � (J by the definition of 
generator, so there is a positive integer k such that 

(Jk :::; a < (Jk+l . 

Thus 1 ::5 (J-ka < (J .  From Lemmas 4 and 5, we know that e-ka gives a 
solution of x2 - Ny! = 1 . We have defined (J to be the smallest number 
that is greater than one and which gives a nontrivial solution. But e-"a 
is smaller than (J and also gives a solution. Hence (J-"a gives a trivial 
solution. Thus (J-ka = 1 or a = fJk, as we wanted to show. 

Problems 

" 1 .  Find the generator for x� - Ny! = 1 when N is 8, 6 ,  1 2, or 10. 
2 . Find the generator for x, - Ny2 = 1 when N is 1 5 ,  7, 1 1 ,  or 1 3 .  

" 3 .  Find two positive nontrivial solutions ofx� - Ny' = 1 when N i s  8, 6 ,  or 63 . 

4. Find two positive nontrivial solutions of x' - Ny' = 1 when N is 1 5 , 7 ,  or 
99. 

* 5. Find three nontrivial solutions of x' + 2xy - 2y' = 1 .  

6 .  Determine infinitely many solutions of the equation in Problem 5 .  

* t  7 .  (a) Show that if a t > b, then x ·  + 2axy + by2 = 1 has infinitely many so­
lutions if a2 - b is not a square. 

(b) If a2 < b, show that the equation has only solutions in which y = 0, 1 ,  or 
- 1 . 

(c) What happens if a2 = b ?  

8 .  (a) Let a = 2mn, b = m 2  - n2, and c = m 2  + /12 be the sides of a Pythago­
rean triangle.  Suppose that b = a + I .  Show that (m - n)' - 2n2 == 1 ,  
and determine all such triangles. 

(b) Find the smallest two such triangles . 

*t 9. (a) Show that a triangle with sides 2a - 1 ,  2a, 2a + 1 h as an integer area if 
and only if 3(a2 - 1) is a square . 

(b) Find three such triangles. 

10 .  (a) Show that a triangle with sides 2a, 2a + 1, 2a  + 2 h as a rational area if 
and only if 3«2a + I )' - 4) is a square. 

(b) Show that this is impossible .  

1 1 .  Show that if x I + Y I VN is the generator for x,  - Ny' = 1 ,  then all solutions 
X,,, Yk can be written in the form 

2Xk =" (x, + Y I  v/jlj)k + (x, - YI VN)", 
2 VNY,. = (x, + YI VN)k - (x, - YI YN)k. 

12. Show that if X I + YI ViIi is the generator of X2 - Ny'J = 1 ,  then 



162 Section 20 

0 <  Xl - yl '-IN < 1 .  

" 1 3 .  With the notation used i n  Problems 1 1  and 1 2 ,  what happens to Xk/Yk as k 
gets larger and larger? 

14. If X l + Y l  v1'i is the generator for X! - Nyt = 1 and 

k = 1 , 2 ,  

Xk  + Yk VN = (Xl + Yl YN)k, 
, show that 

Xk+l = 2xlx/t - Xlt-t >  
Ylt+l = 2Xt Yk - Ylt-l '  

" 15 .  1 Q! + 1 P + 121 = 13 '  + 14� .  Find another sum of  three consecu tive squares 
equal to a sum of two consecutive squares . 
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21 
Bounds for 1T(X) 

Prime numbers have always fascinated mathematicians, professional 
and amateur alike. They appear among the integers , seemingly at ran­
dom , and yet not quite: there seems to be some order or pattern , just a 
little below the surface , just a little out of reach . Euler tried to discover 
"the secret of the primes" but it always eluded him . People have 
searched for primes, for twin primes, for formulas which would give all 
the primes or give only primes , and people are still searching today. 
The largest pair of twin primes-that is, primes whose difference is 
2-that is known was discovered in 1 972: 76 . 3 139 - 1 and 76 . 3 139 + 1 
are both primes . It is not even known if the number of twin primes is 
infinite; it is not known whether n2 + 1 is prime infinitely often: the 
primes do not give up their secrets easily . 

In the next section we will look at some formulas for primes, and in 
this one we will consider the number of primes among the integers 1 , 2, 
. . . , n. Although we may have a hard time telling whether a specific 
large integer is a prime, we can make quite accurate statements about 
how many integers in a given interval are prime. An actuary for a life 
insurance company does a similar thing when she makes accurate 
statements about how many policyholders will die in the coming year, 
even though she can say nothing about who is doomed: A casino oper-
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ater also does a similar thing when he makes accurate statements about 

how much profit a roulette table will make, even though he can say 

nothing about how much you will lose . We can often tell what is hap­
pening on the whole , even when the details are not clear . 

In this section, x will not be restricted to be an integer , nor will y, 
though other lower case italic letters will continue to denote integers . 

Let 'IT(x )  denote the number of primes less than or equal to x. 

" Exercise 1. What are 'IT(2 ) ,  'IT(24) , 'IT( Y4Of) ,  and 'IT(3'lT)? 

Given a table of primes, counting will give 'lTV:-) for small values of x: 

x 1 1 10 

'IT(x )  0 4 

100 

25 

1000 

168 

10000 105 106 101 

1229 9592 78498 664579 

It looks as if 'IT(x)  is increasing, but at a slower rate than x, and it would 
not be unreasonable to suppose that anyone considering the evidence 
might sooner or later guess that 'IT(x) and xlln x are increasing at the 
same rate. This is indeed so, and the 

Prime Number Theorem. A s x  increases without bound, the ratio of 7TV:-) 
to xlln x approaches 1 .  

was guessed more than 100 years before it was proved. (In x denotes 
the natural logarithm of x . )  In fact, for x between 100 and 101 ,  the ratio 

stays between .9 and 1 .2 ,  and by the time x is 1010 it is 1 .048. We will 
not prove this; instead , we will establish the weaker result that 

( 1 )  
1 7T(X)  4" In  2 < 

xlln x 
< 32 In 2 

for x :2: 2. That is, we are showing that the ratio stays between . 173 
and 22. 18 .  The inequalities in ( 1 )  were first proved by Tchebyshev in 

1850 with better constants than . 1 73 and 22. 18 (they were closer to 1 ) ,  
and he also proved that if the ratio o f  'IT(x) to x lIn x approached any 
limit, it had to be 1 .  That was the first step on the way toward the 
proof of the Prime Number Theorem, though Legendre had stated in 

1780 that good approximation to 'IT(x) was xlOn x - 1 .08366) , and in 

1792 Gauss suggested r dy lIn y ,  which fits even better. But Gauss was 
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not able to suggest a proof, and it was not until 1 859 that Riemann 
attempted a proof which was not adequate , but contained the ideas 
essential for a complete proof. It was in 1 896 that Hadamard and 

de la Vallee Poussin independentlY proved the theorem, and work on 
refinements of it still continues. 

The proof of ( 1 )  may seem unnatural because some of the pre­
liminary results are proved by induction, and a proof by induction 
never discloses where the result came from in the first place, and 
because it may not be clear where the central idea came from , or 

even what it is. Since it did not occur to Gauss,  we do not have to 

feel bad if we do not see it immediately .  

Recall that for n 2: 1 , 17 !  = n (n - 1)  . . .  3 · 2 · 1 ,  and that 

( n) n (n - 1 ) · · ' (/1 ' - ,. + 1 ) n !  
r 

= 
r(r - I) " ' 1  

=
r ! (n - r) !  

( 5 ) 5 · 4  5 !  
for n 2: r 2: 1 . For example , 3 

= 
D 

= 
3 !  2 !

' 

*' Exercise 2. Evaluate ( � ) and ( � )  . 

Our proof depends on properties of ( �:1) . Its first few values are 

n 2 3 4  5 6 7 

( �n 2 6 20 70 252 1 748 1 7 1 60 

They may not seem very interesting ,  but when they are factored they 

have some striking properties . Table 1 gives the factorization for 

n = 1 ,  2, . . . , 20, and several observations can be made: 

1 .  All the primes between n and 2n appear with exponent 1 .  
2. None of the primes between 2nl3 and n appear at all .  

3 .  ( �) is always divis ible by n + 1 .  

4 .  Each prime-power i s  less than 2n . 

The last one is not easy to see , but it is the one we will need. Before 

we prove that it is true , we need to look at the prime-power dec om-
. . 

f '  b 
( 2n ) (2n) ! 

h h 
. . posItIon 0 n .  ecause n = (n !)2 , so t e power t at a pnme IS 
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raised to in the prime-power decomposition of ( ;) will be the power 

it is raised to in the prime-power decomposition of 2n! minus twice 
the power it is raised to in the prime-power decomposition of n !  The 
prime-power decomposition of 20l is  218 . 38 . 54 . 72 · 1 1 · 13 · 17  ' 19, and 
it is not hard to see why the exponent of 2 is 1 8 . One power of 2 comes 
from each of the 1 0  multiples of 2 (2, 4, 6, 8, 10, 12,  14, 16,  18 ,  20), 
one more from each of the 5 mUltiples of 4 (4, 8, 12 ,  16, 20) . one more 
from each of the 2 mUltiples of 8 (8, 16), and one from the single 
multiple of 1 6  ( 16) . 

Table 1 .  Exponent of p in the prime-power decomposition of ( 2:) 
p 

2 3 5 7 1 1  13  17  19  23 29 3 1  37 

1 1 
2 1 1 
3 2 0 1 
4 1 0 1 1 
5 2 2 0 1 
6 3 1 0 1 1 
7 3 1 1 0 1 1 
8 1 2 I 0 1 1 
9 1 0 1 0 1 1 1 

1 0  2 0 0 0 1 1 1 1 
I I  2 I 0 1 0 1 1 1 

n 12  1 0 0 1 0 1 1 1 1 
1 3  2 0 2 I 0 0 1 1 1 
14  2 3 2 0 0 0 1 1 1 
1 5  3 2 1 0 0 0 1 1 1 1 
1 6  0 2 1 0 0 0 1 1 1 1 1 
17  1 3 1 0 1 0 0 1 1 1 1 
18 1 1 2 1 1 0 0 1 1 1 1 
19 2 1 2 1 1 0 0 0 1 1 1 1 
20 1 2 1 1 1 1 0 0 1 1 1 1 

Exercise 3. What is the exponent of 2 in the prime-power decomposi-
tion of 1 2l ?  What is the exponent of 3?  

The number of  multiples of 2 that are less than or equal to 20  is r, 
where 2 · 1 ,  2 ' 2 , . . .  , 2 'r are less than 20. That is, r is the largest 
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integer less than 20/2,  or [2012J . Similarly, the number of multiples of 4 
that are less than or equal to 20 is [20/4] , and so on: 

18 = [20/2J + [2014J + [20/8] + [20/ 16] .  

In general , we have 

Lemma 1 .  The highest power of p that divides n !  is  

[nip] + [nlp2] + [nipS] + . . .  . 

Proof. Each multiple ofp less than or equal to n adds one power of p to 
n ! ,  and there are [nip] such mUltiples . The multiples of p2 each contri­
bute an additional power of p ,  and there are [nlp2J such multiples . And 
so on: the additional contribution made by the multiples of pk is [nlpkJ , 
and hence p to the power [nip] + [nlp2] + [nlp3] + . . . exactly divides n !  

As an application of the lemma, we can determine how many zeros 
there are at the end of 1 984! The highest power of 5 that divides 1 984! is 

[ 1984/5] + [ 1984/25] + [ 1 9841125] + [ 1 984/6251 = 396 + 79 + 1 5  + 3 
= 493 . 

Since there more than that number of factors of 2 in 1984 ! ,  it ends with 
a string of 493 consecutive zeros. 

" Exercise 4. How many factors of 2 are there in 1984 !?  

Lemma 2.  The highest power ofp that divides ( 2
n
n) is 

[2 nip ] - 2[nlp] + [2nlp2] - 2[nlp2] + [2nlp3] - 2[nlp3] + . . . .  

Proof. Since ( 2
n
n) = (2n) !I(n !)2 we can apply Lemma 1 .  The numera­

tor contains exactly [2 nip ] + [2nlp2] + [2nlp3] + . . . factors of p and 
the denominator contains exactly 2([nlp] + [ nlp2] + [nipS] + . . . ) fac-

tors of p, so ( �n) contains exactly their difference. 

Note thRt all these sums of greatest-integer brackets end, since 
sooner or later pk > n, and so [nlpk] = fnlpHI] = . . .  = O. 
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Lemma 3. For any x, [2x] - 2[x] :$ 1 .  

Proof. From the definition of the greatest-integer function, [2x] :$ 2x 
and [x] > x  - 1 ,  so 

[2x] - 2[x] < 2x - 2(x - 1) = 2. 

Since [2x] - 2[x] is an integer, the conclusion follows . 

The next lemma is the one which makes the proof work. 

Lemma 4. Each prime-power in the prime-power decomposition of 

( 2nn ) is less than or equal to 2n . 

Proof. Suppose that pI" is in the prime-power decomposition of ( 2
n
n) . 

Suppose that pI" > 2 n .  Then [2nlpr] = [2nlpr+ l ]  = . " = 0, [nip)'] = 
[n/pr+l ]  = . . .  = 0, so the sum in Lemma 2 ends after r - 1 terms: 

(2) r = ([2nlp 1 - 2[n/p]) + ([2nlp2] - 2[nlp2]) + . . . 

+ ([2n/pr-t ] - 2[nlpr- t ] ) .  

But from Lemma 3 ,  each of the terms in  parentheses i s  at most 1 .  Thus 
(2) says that r :$  1 + 1 + . . .  + 1 (r - 1 terms) or r :5 r  - 1 ,  which is 
impossible. Thus pl" :5 2n.  

We next need bounds on ( 2
n
n) . 

Proof. We will use mathematical induction. The lemma is true for 

n = 1 because ( �  = 2. Suppose that it is true for n = k. Then 

( 2(k + 1») k + 1 
(2k + 2) ! 
« k  + 1) !)2 

(2k + 2)(2k + i')(2k! )  
(k + l)k !(k + l)k ! 

= 
2(2k + 1 )  ( 2k) . 

k + 1 k 
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On the one hand, 

2(2k + 1) ( 2k) 2(2k + 2) ( 2k) = 4 ( 2
k
k) ::s: 4 . 22,. 

k + l k < k + l k 

and on the other ,  

Lemma 6 .  For n 2: 2, 7T(2n) - 7T(n) ::S: (2n In  2)11n n .  

Proof. The idea is th at the prime-power decomposition 

contains each prime between f1 and 2n . This is because 

( 2n) = (2n)(2n - 1) · · · (n + 1) , 
n n(n - 1) . .  · 1 

of ( 2nf1) 

and none of the primes in the numerator can be canceled by any factor 
in the denominator. Thus 

But each prime is larger than n, so 

which is n multiplied together as many times as there are primes be­
tween n and 2n . That number is 7T(2n) - 7T(n) , and so 

II n = n,,(2)>)-'''('') • 
n<ps2n 

So, using Lemma 5, we get 

Taking logarithms of both sides gives 2n In 2 2: (7T(2n)  - 7T(n» In n, 
which is what we wanted to show. 

Lemma 7. For n :2:·2, 7T(2n ) :2: n  In 2I1n(2n) .  
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Proof. From Lemma 4, each prime-power in the prime-power decom­

position of ( 2
n
n) is at most 2n, and there are at most 1T(2n)  prime-

powers.  Hence ( 2
n
n) ::; (2n )",a1l) . From Lemma S , we get 2" ::; (2n)w(21!" 

so n In 2 ::;  1T(2n)  In (2n) ,  and that is what was to be shown . 

Lemma 8. For r 2: 1 ,  1T(22r) < 22r+2;". 

Exercise 5. Verify that the lemma is true for r = 1 and 2.  

Proof. We will use mathematical induction. The lemma is true for 
r = 1 .  Suppose that it is true for r = k. Then 

1T(22k+2) = (1T(22k+2 ) - 1T(22k» + 1T(22h ) .  

From Lemma 6 we have 

1T(22k+2) ::; (2 · 22k · In 2)/ln(22k) + 1T(22k) 
= 22"lk + 1T(22k) ,  

and from the induction assumption we get 

7T(22kH) < 22k/k + 22h"+2/k = S · 22k/k. 

We want to show that 

1T(22k+2) < 22k+�/(k + 1) = 1 6 · 22k/(k + 1 ) ,  
and this will  be so if 5/k < 16/(k + 1 ) .  But this i s  true fo r  k 2: 1 .  

N ow we can prove 

Theorem 1. For x 2: 2, 

1 4" In 2 (xlln x) ::; 7T(X ) ::; 32 In 2 (x/In x ) .  

Proof. To get the left-hand inequality, let n be so that 2 n  ::; x < 2 n  + 2 .  
We will apply Lemma 7 :  

7T(X) 2: 1T(2 n )  2:
n In 2 2: n In 2 2: 2n + 2 In 2 
In(2n)  In x 4 ln x 

x In 2 > - -
4 ln x  
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To get the right-hand inequality , choose I' so that 22,--2 ::5 X < 221" and 
apply Lemma 8: 

But In x < (21') In 2 ,  so I' > (In x)/(2 In 2) ,  and it follows that 

n(x) 32 1n 2  -- < --- , 

which is what we wanted. 

Problems 

x In x 

*t 1 .  (a) What is the highest power of 2 that divides 1 984 ! ? 
(b) For which n does 2" divide 11 !  ? 

2. Prove by induction a stronger version of part of Lemma 5, namely 

C;!) > 2tH/ vn for n ?: I .  

t 3 .  Prove that i f  n < p oS 2n , then p appears in the prime-power decomposi-
. f ( 2 11) tlOn 0 

11 
to the power 1 .  

4. Prove that if p is odd and 2 n/3 < p oS 11 , then p does not appear in the 
. d . . ( 2 n) pnme-power ecomposltlOn of 11 • 

t 5 .  Let p .. denote the n th prime . If 7r(x) oS ax/I n  x, show that p. 2: � n In 11 .  
a 
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Formulas for Primes 

In the earlier days of mathematics, there was a feeling that " function" 
and "formula" were more or less synonymous.  Today, the notion of 
function is more general. but many of us still feel more comfortable 
with a function if we have an explicit formula to look at. There is no 
difference , really, between 

fin) is the largest prime factor of n 

and G.  H .  Hardy's formula 

s 
fen) = lim lim lim 2: [ 1  - (COSZ (ll !y7Tln )21] .  

r�oo $----+00 t-+'YJ u=o 

The first expression is simpler, but perhaps the second lets us feel that 
we somehow have more cl:mtrol over f (Some primitive people believe 
that if you know a man's name , then you have power over him. It is the 
same principle. )  

The importance of formulas is of course not psychological but prac­
tical: in general, a formula  will let us compute things of interest . Thus 
the formula  above is less useful than the verbal description: it obscures 
whatfis, and it does not lend itseifto computation. But if we agree that 
formulas in general are nice things and worth having. then it is reason-

172 
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able to search for them . We might ask for a formula for Pn , the n th 
prime. But the primes are so irregularly scattered through the integers 
that this is probably beyond all reason. The next best thing would be to 
have a formula that would produce nothing but primes . The aims of this 
section are to show that no polynomial formula will work , to exhibit a 
formula which will (but which is not adapted to computation) , to prove 
that there is a prime between n and 2n for all positive integers n, and to 
use this to get another formula for primes . 

The simplest sort of formula to consider is 

fen )  = an + b. 

If we found such a function that gave nothing but primes , then we 
would have an arithmetic progression, with difference a, consisting 
entirely of primes. Looking through tables of primes, we can find vari­
ous arithmetic progressions of primes , but none of infinite length: for 
example, 

3 , 5 , 7 ; 
7 , 37, 67, 97, 127 ,  1 57;  
199, 409, 619, 829, 1039, 1 249, 1 459, 1669, 1879, 2089. 

But no infinite arithmetic progression can be made up entirely of 
primes , as we now show. Suppose that pta, so (a, p) = 1 and hence 
there is an integer r such that ar '" -b (mod m ) .  Then 

a(r + kp) + b ",. ar + b "'" 0 (mod p) 

for k = 0 ,  I , . . . , so every pth term of the sequence is divisible by p. 
The longest arithmetic progression known th at consists entirely of 
primes is 223092870n + 22361 3394 1  for n = 0 ,  1 ,  . . .  , 1 5  [7] , and it is 

. not known if there exist arbitrarily long arithmetic progressions of 
primes. 

After seeing that a sequence {an + b }  cannot consist entirely of 
primes, it is natural to ask whether the sequence can contain infinitely 
many primes.  The answer to this is given by Dirichlet' s Theorem: If 

(a, b) = I ,  then the sequence {an + b }  contains infinitely many primes. 
For example ,  among the members of the sequence {4n + 1 }  are the 
primes 5 , 1 3 , 17 , 29, 37 , 41 , . . .  , and among { 12n + 7}  are 7 , 19, 3 1 ,  
43 , 67, . . . ; Dirichlet's Theorem says that we will never come to a 
last prime in either sequence. The condition (a, b)  = 1 is clearly neces­
sary: {6n + 3 }  contains only one prime and { 6n + 4} contains none . 
Dirichlet's great achievement was in showing that the condition was 
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also sufficient. The proof of this theorem is not at all easy, and we will 
not attempt it. 

However, some special cases are easy. Consider {3n + 2} ,  suppose 
that there are only finitely many primes in it, and call them P I >  P2 ,  

. . .  , Pt· Let N = PI P2 . . .  Pk . If  N "'"  1 (mod 3 ) ,  then N + I ,... 2 (mod 
3) and thus must have at least one prime divisor congruent to 2 (mod 3) 
(otherwise N would be congruent to 1 (mod 3)) .  But N + 1 � 1 (mod 
p,J , so whatever prime divisor it has is not one of P I , P2 ,  . . .  , Pk. If 
N "'"  2 (mod 3) ,  then N + 3 "'" 2 (mod 3) ,  and N + 3 must have a prime 
divisor congruent to 2 (mod 3) .  But N + 3 a 3 (mod Pk), so its prime 
divisor is not one of PI , P2 ,  . . . , Pk either. This is impossible so the 
assumption that there were only finitely many primes in the sequence 
was wrong. 

No polynomial can have only prime values, either. Iff(n) = aonk + 
a t nt-I + . . . + at. and ifr is such thatf(r)"" ° (modp) for some p ,  then 
fer + mp)""'f(r) "'"  ° (mod p) for m = 1 , 2 ,  . . . .  Just as with arithmetic 
progressions, if one term is divisible by P, then every pth term from 
there on is also divisible by p . The champion quadratic polynomial for 
having consecutive prime values is n2 + n + 4 1 ,  found by Euler . It has a 
prime value forn = -40, -39, . . . , 39. However, 402 + 40 + 41  = 412 , 
and every forty-first term in the sequence {n2 + n + 4 l }  is divisible 
by 4 1 .  The analogue of Dirichlet' s Theorem for higher-degree poly­
nomials would be that {aon'" + a tnt-I + . . .  + at} contains infinitely 
many primes if ao , a t , . . . , at  have no common factor. No such 
theorem has been proved, and it is not even known if n2 + n + 41  is 
prime infinitely often, though it seems unlikely that this should not 
be so. 

On the other hand , we can construct a polynomial that assumes as 
many consecutive prime values as we want, because if can be shown 
that it is always possible to make a polynomial of degree d take on d + 1 
arbitrarily assigned values . For example, if 

60f(x) = 7x' - 85x� + 355x3 - 575x2 + 4 18x + 1 80, 

then we have 

n I � fen)  
1 2 
5 7 

3 
1 1  

4 
13 

5 
17 

A similar polynomial could be constructed to take on 8 1  consecutive 
prime values, but it would be of degree 80. 

After giving up on polynomials, it would be natural to try expo­
nential functions. For example,  if 
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then f(n)  is prime for n = 2, 3 .  4. 5, 6 ,  7 (the values of the function 
are 2 ,  3, 5, 7 .  1 1 ,  and 17), but f(8) = 25, and the next prime in the 
sequence does not come until f(2 I ) = 4987. No one h as prov ed that a 
formula like fen)  = [0" ] cannot always give a prime. Nor is it known 
whether [0" ] can be prime infinitely often. Such questions seem 
hopelessly difficult. 

Nevertheless, there do exist functions, expressible as a simple 
formula, that always represent primes . We will prove ,  partly . a striking 
result of Mills [1 1 ] : 

Theorem 1. There is a real number 0 such that [tfl"] is a prime for all 
n, n = 1 ,  2, . . . . 

As we shall see, this theorem contains less than meets the eye , and 
it should not seem nearly so striking after we finish the proof. The 
proof gives a construction for O .  but the construction depends on being 
able to recognize arbitrarily large primes . If we could recognize 
arbitrarily large primes . we would have no need of the formula. 

In the proof we will use two theorems from analysis. 

Theorem. If a sequence lI j ,  lit, lI3 , . . .  , lI", • . .  is bounded above 
and nondecreasing, then it has a limit. 0, as n increases without bound. 

That is, if there is a number M such that Un < M for all n and 
un :::; U,,+I for all - n ,  n = 1 ,  2, . . .  , then there i s  a number 0 such 
that the difference between e and u" becomes arbitrarily small as n 
increases without bound . We will not prove this theorem, or the next. 

Theorem. If a sequence V 1 >  V2 , V 3 ,  • . •  , Vn • • • •  is bounded below 
and nonincreasing, then it has a limit, r:p ,  as n increases without bound. 

We will write 

and lim Vn = r:p 

and read "the limit of Un as n approaches infinity equals 0," and a 
corresponding statement for v". 
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Proof of Theorem 1 .  The proof depends on the following theorem: 
there is an integer A such that if n > A , then there is a prime P such 
that 

( 1 )  

We will not prove this but we will use it to determine a sequence 
of primes that will in turn determine e .  Let P I  be any prime greater 
than A , and for n = 1 ,  2,  . . . , let P ,,+1 be a prime such that 

(2) 

Such a prime exists for each n on account of ( 1 ) .  Let 

(3) and v" = (p" + lr' ,  
n = 1 , 2 , . We see that as n increases, u" increases, because 
from (2) ,  

(4) 

Furthermore, {vn } is a decreasing sequence, because from (2) , 

(5) Vn+! = (p,,+! + 1VH < «P" + 1 ) 3 - 1 + 1 ) 3---- = (p" + 1) 3-." = VIl" 

It is clear from (3) that u"  < v". Hence, because of (5) , 

U "  < Vn < V"_I < - - - < V I '  

so U n < V I  for all n _ In  the same way, from (4) we have 

so Vn > U I for all n .  Thus {un}  is an increasing sequence of numbers 
that is bounded above by V I - It follows that {un} has a limit . Call it e .  
Also , {v,,}  is  a decreasing sequence of numbers that is  bounded below 
by U I _  Hence {vn } has a limit too. Call it £:/> .  Since Un < Vn for all n ,  it 
follows that () :S  1.> .  In fact, since {un } increases and {vn} decreases, 
we have 

U" < () :S £:/> < V,, 

for all n ; thus 

for all n _ But from the definitions of u"  and Un , 

u,/' = p" and UTt = p" + 1 .  
Thus 

p" < (J3" < Pn + 1 .  

This locates ()3" between two consecutive integers , and so 



[If'' ] = Pll '  

a prime , for all n .  
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From the construction, we see that knowledge of () and knowledge 
of all the primes is essentially equivalent, so that the theorem gives us 
nothing that we did not have before ,  except perhaps pleasure at seeing 
a clever idea neatly worked out. The theorem would be important 
only if we could discover what () is by some method independent of 
all the primes, and this IS not likely . 

To prepare for getting another formula for primes, we will derive a 
result of independent interest, Bertrand's Theorem: 

Theorem 2. For all n 2: 2 there is a prime p such that n < p  < 'In .  

Proof. Just as in the last section, we will need properties of (2�1 ) , and 

we will need to recall the binomial formula 

(6) (x + y)" = x" + (� ) X"- ly 

(n ) II " 0 ( n ) + 
2 

x -7- + . . . + 
n - 1 

xy "- l + y" , 

tme for any x and y .  We will assume that for some n there are no 
primes p such that n < p < 2n , or what is the same thing for 
n < p :::; 2n ,  since 2n is not a prime when n 2: 2.  We will show that 
this implies that n < 2788 , so that the theorem is true for n 2: 2788 . 
By checking the cases n = 1 ,  2 , . . . , 2787 , we can then complete 
the proof. 

First we will show that for n 2: 2, 

(7) 

This is not a strong inequality-for n = 10 it asserts only that 
210 :s 1048576-but it is all that we need. The binomial expansion of 
(1 + 1)2111+1 is 

(1  + 1)2111+ 1 = 1 + (2m t 1 ) + . . . + (2m 
m
+ 1 ) + (2::;: 11 ) 

+ . . . + cr;; 1 ) + 1 
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2: 
e":n+ 1 ) 

+ e:: / ) . 
The two terms are both equal to 

(2m + 1)(2m) . . . (m + 2) 
m(m - 1) . . .  1 (8) 

(2 m
m

+ 1 ) 
or so 22>1HI 2: · 2 

(9) 22m 2: 
C":n+ 1 ) 

. 

Al 
(2m + 1 ) . d' . 'bl b h '  h th t 1 so m IS IVIS1 e y eac pnme p suc a m + < p :5 

2m + 1 ,  as inspection of (8) shows. Thus 

( 10) 

Now we can prove (7) by mathematical induction. It is true for 
n = 2. Suppose that it is true for all n :5 k. If k is odd, then k + 1 
is even, and 
( 1 1) IT p = IT p :5 22k < 2Z(k+! l .  

p"'k+1 psk 
If k is even, say k = 2m , then 
(12) J�L p = CIt p ) C+lJlm+l p 

) 

where the induction assumption was used on the first product and ( 10) 
on the second. ( 1 1) and ( 12) complete the induction. 

Remember that we have assumed that 
(2: ) 

= N has no prime divi­
sors p such that n < p :5 2n . But 

N = (2n)(2n - 1) ' . (n + 1 )  
n(n - 1)  . . . 1 

so if 2n/3 < p :5 n ,  then p is a factor in the denominator, and since 
2p > 4n/3 2: n + 1 ,  2p is a factor in the numerator. The two p ' s  
cancel, and since 3 p > 2n , there are no more factors of p in the 
numerator. Thus all of the prime divisors of N are at most 2n/3 , so 

(13) IT p :5  2
4,,/3

; 
ps;Z,,/3 

the last inequality comes from applying (7). 
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We will use (13) to get an upper bound for N.  From Lemma 4 of 
Section 2 1 ,  we know that each prime power in the prime-power 
decomposition of N is at most 2n . So, if p appears in the prime­
power decomposition to be a power greater than 1 ,  then p2 ·:5 2n and 
p :5 v2ri. There are at most V2ii such primes, and since each prime 
power is at most 2n, their contribution to the prime-power decomposi­
tion is at most (2n)v'2n. All of the other primes appear to the power 1 ,  
and from (13) , their product i s  at most 2471/3 . Thus 

( 14) C: ) :5 24n/3(2n)V2n. 

On the other hand, mathematical induction shows that 

( 15) 
(2n ) 2: .  22n 

n 2n 

(
because 

(2n + 2 ) = (2n + 2)(2n + 1) (2n ) 2: .  2(2n + 1) 22" 
n + 2 (n + 2)(n + 1) n 11 + 1 2n 

= 2n + 1 2271+2 > .  22>1+2 ) , 
2n 2n + 2 - 2 n  + 2 

so combining (14) and (15) we get 

and this does not hold if n is too large. Taking logarithms , we get 

2n In 2 - In 2n :5 (4n/3) In 2 + V21l In 2n 

or 

or 

(2n/3) In 2 :5  (V2ti + 1) In 2n :5 (-v2n" + Y2n) In 2n 
= 2 V2 vn In 2n 

_ I < 3 v2 ln 2n . v n -
In 2 

Since Yn increases more rapidly than In 2n , this inequality is false 
for n sufficiently large: in fact, for n > 2787. The sequence of primes 

2, 3 ,  5, 7, 13,  23, 43 ,  83, 163 , 3 17, 63 1 ,  1259, 2503 , 9973 , 

each less than twice the one before, shows that for n :5  2787 there is 
always at least one prime between n and 2n . 

We can use this to get another formula for primes like the one in 
Theorem 1, but which does not deperid on an unproved theorem [ 16] . 
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Choose any PI and for n = 1 ,  2 ,  . . . , let P n+ 1 be a prime such that 

(16) 

such a prime exists because of Theorem 2. Let 

( 17) U" = log(ll)p,u v" = log(n)(p" + 1) ,  

where 10g I lk = logz k and loge>!) k = logz(log(,,- l )  k) .  Taking logarithms 
to the base 2 in ( 1 6) gives 

p" < logz pn+l < p,, +  1 ,  

and since P,,+l + 1 :S  2P"+ , ,  we have 

p" < 10gWPn+l < 10g{ I )(Pn+l + 1) :S p" + l . 

If we take logarithms to the base 2 of the preceding inequalities n times, 
we have 

So, as in the proof of Theorem 1 ,  8 = lim Un and <:P = lim Vn exist. Let f'I-+X; N-+O': 
expW k = 2k and exp(r" k = 2exp(R- 1 l  k. Then from I I  It < () < V I (  we get 
exp(")u"  < exp(ll)8 < exp(>l)v", or 

PI( < exp(n)8 < p" + 1 ,  

and we have [exp(Hl8] = P It  for all n .  Restating this, we have proved 

Theorem 3 .  There exists a real number 8 such that [28] , [22'] ,  [22" ] ,  

are all prime. 

Various other formulas for primes have been devised. For example, 
we can use Wilson' s Theorem to get a formula for 1T(X). Recalling that 

(n - l) ! + 1 
n 

is an integer if n is prime and is not an integer if n is composite, 

• ((n - I) ! + 1 ) f( ) COS-1T = n n 

is 1 if n is prime, and less than 1 if n is composite. Thus 

1T(X) = 2: [fen)] . 
2s;n.!f.r 

Another striking result, also based on Wilson' s Theorem, appeared 
in 1976 [6] : the set of prime numbers is identical with the set of 
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positive values taken on by the following polynomial of degree 25 in 

the 26 variables xl , x2 ,  : . .  , X26 : 

(XI I + 2){ 1 - [X23X26 + X8 + XIO - x1 7]2 

- [(X7Xn + 2X7 + Xl i  + 1)(x8 + XIO) + X8 - X26)2 

- [2X14 + X16 + X17 + X26 - x5F 

- [ 1 6(xl I + 1 )3(xl l  + 2)(XI4 + 1 )2 + 1 - X62)2 

- [X53(X5 + 2)(x) + 1 )2 + 1 - XI52? 

- [(x/ - l)x252 + 1 - xziP - [ 16XI82X254(XI2 - 1) + 1 - X21 2F 

- [(XI + X212(X112 - XI)2 - 1)(x14 + 4X4X25)2 + 1 - (X2� + X3X21 )2]2 

- [XH + XI2 + -'22 - X25)2 - [(XI2 - 1 )X122 + 1 - X132F 

- [XIX9 + Xli + 1 - Xn - X9]2 

- [X16 + XI2(xI - X14 - 1) + x2(2xIX14 + 2x] - XJ4z - 2XI4 - 2) - xd2 

- [XJ7 + X25(X1 - X16 - 1 )  + X19(2x1X16 + 2xI - XI62 - 2X16 - 2) - X24]2 

- [X26 + XI6XI2(X1 - XI6) + x20(2x1xI6 - X162 - 1) - XI6XI 3)2 } .  

To have a set of problems following that would be anticlimactic , and 
so the text will stop here. 
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23 
Additional Problems 

There is no quicker way of developing mathematical power and matur­
ity than by doing problems-not routine exercises, in which you substi­
tute numbers in some formula, or mimic some worked-out example in a 
book, or differentiate yet another function, but problems where you 
must apply what you know but do not know in advance how it will be 
applied. There is no growth in repeating exercises, but there is growth 
in looking at a problem of a sort never before seen and asking what 
ideas could possibly be applied to it, then trying to apply them. It 
is in considering problems that mathematicians, and mathematics, 
develop. Of course, there is no growth without some pain, error, and 
frustration, and there will be many problems-perhaps most-which 
will defeat you .  But that is the way of it: no matter how good you are, 
there will be problems you cannot solve; and no matter how bad you 
are, there will be problems that are simple for you. 

Some problems follow. They are listed by the section of this book in 
which they could have appeared. In addition, there are 100 miscella­
neous problems, arranged very roughly in order of difficulty,  without 
regard to subject. 

182 
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* 1 .  Find two solutions of 299x + 247y = 52. 
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2. (a) Prove that (a, b) = (a, c) = I implies (a, be) = 1 .  
(b) Prove that (a, b )  = 1 and c i a  imply (c, b )  = 1 .  

3 .  (a) Prove that if a I e, b i e, and (a, b )  = d ,  then ab l ed .  
(b) Prove that if  (a, c) = 1 and (b, c )  = d ,  then (ab, c) = d .  

4. Prove that if  d is odd, dl  (a + b) ,  and dl  (a - b) ,  then dl  (a, b) .  
5.  Prove that if p i (ra - b) and p I (rc - d) for some r, then p I (ad - be) . 
6. If a, b, and c are positive integers, prove that a i e, c I b, and (a, b) = I 

together imply that a = 1 . 

" 7 .  Student A says, "I've been looking for a half hour for n such that n and 
n + 20 have a greatest common divisor of 7 and I haven't found one. I think 
I'll program it for the computer ."  Student B says,  "The computer won't 
find one, either ."  How did B know that? 

8. Let (a, b, c) denote the greatest common divisor of a, b, and c .  
(a) Prove that (a, b ,  c) = « a, b ) ,  c). 
(b) If (a , b) = (b, c) = (a, c) = 1 ,  prove that (a, b,  c )  = 1 .  
(c) Show that the converse of (b) is false. 

'" 9. Is it true that (k, n + rk) = d for all integers r if and only if (k, n)  = d? 
10 .  Show that if 1 0 1 (3'" + 1)  for some m, then 1 0 1 (3,H4. + 1)  for all positive 

integers n .  

Section 2 

* 1 .  Complete and prove the 

nzeorem. An integer n is a kth power if and only if every exponent 

2. (a) Find the s mallest positive integer n such that n + 1 ,  n + 2, n + 3 ,  and 
n + 4 are all composite. 

(b) How many consecutive composite integers follow k! + I ?  

"' 3 .  Define the least common multiple of a and b (written [ a, bJ) to be the 
smallest integer m such that a im and b l m. 
(a) Find [ 12 ,  30] and [pq, 2p2] , where p and q are distinct odd primes. 
(b) Show that a = P 1e'P2'" . 'Pkek and b = p/'pl' " 'p/' imply 

where gl = max(el ,/;) ( el ;;:: 0 and/; ;;:: 0), i = 1 , 2 , · " , k. 
(c) Prove that ab = [a, b ](a, b) .  



184 Section 23 

4 .  Let 2 , 3 ,  . . .  , P .. be the first n primes.  Let N = 2 · 3 ·  . . . . P.' lI N  = ab , 
prove that a + b has a prime divisor greater than Pu' 

t 5 .  Establish the following test for primes. If  n is  odd, greater than 5 ,  and there 
exist relatively prime integers a and b such that 

a - b  = n  and a + b = PIP: "  'Pk 
(where P I '  P2 , . . .  , Pk are the odd primes :5: n II2) , then n is  prime. 

Section 3 

., 1 .  How many different ways can thirty nickels, dimes, and quarters be worth 
$5? 

2. The following problem is at least 400 years old: Find the number of men, 
women, and children in a company of 20 if together they pay $20, each man 
paying $3 , each woman $2, and each child 50� . 

3 .  A says, " We three have $ 100 altogether. "  B says, " Yes, and if you had six 
times as much and I had one-third as much, we three would still have $ 1 00. " 
C says, " It' s not fair. I have less than $30." Who has what? 

4. Anna took 30 eggs to market and Barbara took 40. Each sold some of her 
eggs at 5 cents per egg and later sold the remainder at the same lower price 
(in cents per egg). Each received the same amount of money. What is the 
smallest amount that they could have received? 

5. A man sold n cows for $n per cow. With the proceeds , he bOUght an odd 
number of sheep for $ 10 each and a pig for less than $ 10.  How much did the 
pig cost? 

Section 4 

1 .  Prove that if d i m  and a "" b (mod m), then a "" b (mod d). 

2.  True or false? a ""  b (mod m) implies a' "" b� (mod m!). 

"'j' 3. (a) What can a square be , modulo 9? 
(b) Is 3 14 , 1 59,267, 144 a square? 

4. (a) What is the largest integer with ten distinct digits that is divisible by 9? 
(b) What is the largest integer with eight distinct digits that is divisible by 

9? 

5. Suppose that ar "'" b (mod m) and br "" a (mod m) for some r.  Show that 
a2 "" bi (mod m) and find a nontrivial example of such a, b, r, and m .  

6. Show that a s  "" a (mod 1 0) for all a . 
., 7. Find an integer n such that n ""  1 (mod 2) , n "'"  0 (mod 3) ,  and n '"  0 

(mod 5). Can you find infinitely many? 
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8 . Show that no triangular number has as its last digit 2, 4, 7 ,  or 9. (A triangu­
lar number is one of the form n (n + 1)/2.) 

9 . Prove that ifp is a prime and p  divides no one ofa l  , a2 , '  . •  , ap_1 nor any 
of their differences, then a I '  a2 , • • • , a p-l are congruent (mod p) to 1 ,  2,  
. . . , p  - I in  some order. 

10 .  If n = 3 1 ,4 15 ,926,535,897, then let 

fen )  = 897 - 535 + 926 - 415 + 03 1  = 904 . 

Induce a definition forf, and prove that if 7 If(n) , then 7 1 n ; if I l lf(n) , then 
l l l n ;  and if 1 3 lf(n) ,  then B i n . Check 1 1 8,050,660 for divisibility by 2, 3 ,  
5, 7,  1 1 ,  and 1 3 . 

Section 5 

'" 1 .  Solve 9x ... 4 (mod 2401 ) .  
2. Find the smallest positive integer m such that 25 1 m and 35 1 m + 1 .  

*t 3 .  For which positive integers does 

kx "" 1 (mod k (k + 1)/2) 

have a solution? 

4. If (s, m )  = 1 ,  denote the 'solution of sx "" r (mod m) by ,.ls . Prove that 

(/"Is )(rlu) g (rt)/(su) (mod m) 

and that 

(,.Is) + (flu ) "'" (ru + st)/(su) (mod m ) .  

5 .  Consider the system 

X ""  a, (mod m,),  i = I , 2 ,  . . .  , k , 

where the moduli are relatively prime in pairs. Let 

i = 1 , 2 ,  . . .  , k . 

Let si denote the solution ofMix ;9 1 (mod m i ) , i = 1 , 2 , . 

s = G l s]M1 + a!s2M2 + . .  , + akskMk 

satisfies each of the congruences in the system. 

Section 6 

, k .  Show that 

t 1 .  Let a ' denote the solution of ax .. 1 (mod p),  a ""  1 , 2 ,  . . .  , p  - 1 .  
(a) Show that i t  is always true that (ab) ' '''' a 'b '  (mod p) . 
(b) Show that it is not always true that (a + bY E a '  + b' (mod p). 
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2 .  It is known [ 12] that if p is prime, then 

a"(p - 1 ) ! '" a(p - l )(mod p )  

for all a .  Show that this implies both that 

a"-I ",, 1 (mod p) if (a , p) = 1 

and 

(p - 1) ! "" - 1  (mod p).  

t 3 .  (a) Prove that if r! "" ( - W (mod p),  then 

( p - r - l) ! ... - 1  (mod p).  

(b) Find an example of such a p and r.  

4 .  (a) Show that 

(k + l)P - k" "" 1 (mod p),  

for k = 0, 1 ,  . . 
(b) Derive Fermat' s Theorem from this . 

5. A composite n such that n I (2" - 2) is called a pseudoprime. There are 
infinitely many, and the smallest two are 34 1 and 56 1 .  Verify that 56 1 is a 
pseudoprime. 

6. A composite n such that n I (aM  - a) for all a is called an absolute pseudo­

prime. The smallest absolute pseudoprime is 56 1 .  Show that 34 1 is not an 
absolute pseudoprime by verifying that 34q( l F41 - 1 1) .  

t 7. Calculate (2p - I ) !  (mod p�)  for some values of P and guess a theorem. 

8. Prove that if 2"' � 1 (mod p), then 

1 '" + 2m + . . .  + (p - 1)'" ,"". 0  (mod p). 

t 9. If p is a prime, show that p + 2 is prime if and only if 

4«p - 1 ) !  + 1) + p '"  0 (mod p + 2). 

10. If p is an odd prime, and if (a, p) = I ,  n i p - 1 ,  and a ". eM (mod p) ,  prove 
that 

p i (dp-!)/· - 1 ) . 

Section 7 

1 .  Cardano was the first to mention den) when, in 1 537 , he said that if P I , Pz , 
, Pit are distinct primes, then 

d(PIP2 . . .  Pk) - 1 = 1 + 2 + 22 + . . . + 2k- l •  

Verify that this is so. 
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2. Descartes noted, in 1 638, that 
p"  - 1 (J(pN) _ pn = --­
p - 1 

for n = 1 ,  2, . . . . Verify that this is so. 
,. 3 .  Let us call n a practical number if every positive integer less than or equal 

to n is a sum of distinct divisors of n .  
(a) Show that 12 is practical. 
(b) Show that 10 is not. 
(c) Discover a practical number greater than 12.  

(d) Show that every power of two is practical. 

4. Letf(n) denote the number of positive odd divisors of n .  
(a) Make a table off for n = 2 ,  3 ,  4 ,  . . .  , 15 .  
(b) Show that!(2"p'") = m + 1 (p an odd prime). 
(c) Guess a formula for f(2"p}e'P2"' ·  . ·PI/» (Pi an odd prime) . 
(d) Prove it by induction on k. 

*' 5. Suppose that n + (J(n) is divisible by 3 .  
(a) I f  n i s  prime, show that n "" 1 (mod 6) . 
(b) Can n be the square of a prime? 
(c) If n = pq, p and q odd primes, show that one of them is 3 and the other 

is congruent to 5 (mod 6) . 

Section 8 

I .  Numerologists have noted that prime years often coincide with or presage 
ill-fortune. The reason, they say, is that prime numbers are the most defi­
cient of numbers. They point out that since 1910 ,  prime years have been 
1 9 1 3  (World War I next year) , 1931 and 1 93 3  (the Great Depression),  1949 
and 1951 (Korean War), and 1 973 (oil embargo and recession). Since 1 993 , 
1 997 , and 1 999 will all be prime years, some numerologists are looking 
forward to events as large as the end of the world in the last decade of this 
century. Test the numerologists' hypothesis by seeing which of the last few 
years were the most abundant, both in the numerological and non­
numerological sense. 

2. If p' is one of an amicable pair, show that.(J(pe) = (j (�). p - l  
3.  Show that pq (pq F 6) is deficient. 

4. Show that p€, e 2: 1 ,  is deficient: 

t 5. Prove that except for the pairs 3 ,  5 and 5, 7, the number between every 
pair of twin primes is abundant. 

6. For what values of a is 3 ·  5a • 7 abundant? 
,. 7. For what values of a is 2" · 1 1  abundant? 

8. For what values of a is 2ap ,  p odd, abundant? 
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9. Show that if (m, n) = 1 and n is abundant, then mn is abundant. 

10 .  Let n = 2"(2k+1 - 1) .  If 21.:+ 1 - 1 is composite, show that n is abundant. 

1 1 .  Suppose that n = 2''(2)>+1 - 1) is perfect and q < 2"+1 - 1 is prime. Show 
that 2Pq is abundant. 

12.  Show that if m and n are an amicable pair, 

t 13 .  Show that <T( 1 + p) < 1 + P + p\ and use this to conclude that p' can 
never be one of an amicable pair. 

14. If d > 0, d i n and (d, nld) = 1 , then d is called a unitary divisor of n.  
(a) What are the unitary divisors of 120? Of 360? 
(b) Which integers are such that their only divisors are unitary divisors? 
(c) If n = P ," P2

" " 'Pt" , how many unitary divisors has n ?  
(d) If 

where the sum is taken over the unitary divisors, d, of n, then n is 
called a unitary perfect number. Find two such numbers . 

15 .  Here is Euler 's  original proof of Theorem 2. Fill in any missing details. 
Let n = 2km be perfect, m odd. The sum, (2k+ ! - I)o-(m) ,  of the divisors 

of n must equal 2n. Thus 

ml<T(m) = (2k+l - 1)/2k+! , 

a fraction in lowest terms . Hence m = (21.:+1 - 1)c for some integer c. If 
c = 1 ,  then m = 2k+! - 1 must be prime, because <T(m) = 21.:+ 1 .  If c > 1 ,  
then <T(m) � m  + (21.:+1 - 1 )  + c + 1 .  Thus 

a contradiction. 

Section 9 

<T(m ) -- � 
m 

2k+l(C + 1) 2k+l 

m > 2k+l - 1 

1 .  Show that cp(n + k) = 2 cp(n) has at least one solution for each k:  

if (k, 6) = 1 ,  take n = 2k; 

if (k, 6) = 2, take n = k;  

if (k, 6) = 3 ,  take n = k13 ; 

if (k, 6) = 6, take n = k. 

2. Show that the geometric mean of n and cp(n) is not an integer if n = p O ,  
a � · 2. 



* 3 .  Find all n such that </> (2n) = ¢ (3 n ) .  

4. I f  n is  composite, prove that cp(n) :s; n - n 1 l2 .  
t 5 .  Show that i f  6 1 n ,  then cp (n) :s; /1/3. 
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6. Let n = dm . Show that there a;e cp(m) positive integers less than n whose 
greatest common divisor with /1 is d.  

" 7 .  Let cp(2)(n) = cp(cp(n)), cp(3)(n) = cp(cp'2l(n)),  and so  on. Let e (n) denote the 
smallest integer such that 

Calculate e (n)  for 
(a) n = 3 ,  4,  5,  6, 7 ,  8 ,  9.  
(b) 11 = 2", k ;0:, 2.  
(c) n = 3'" ,  k ;0:, l . 
(d) n = 2k3j, k ;o:,  1 ,  j ;o:,  1 .  

cp,.,.ll(n ) = 2 .  

8 .  I f  (m, /1 )  � p ,  how i s  cp (mn) related to cp (m)cp (n)?  

t 9.  Show that cf> (n) = n/3 if and only if  Jl = 2k3J for some positive integers k and 
j. 

1 0 .  Prove the theorem that you guessed in Problem 9 of Section 9. 

1 1 . Suppose we know that cp ( l )  = 1 ,  

cp(np) = pcp(n )  if 
cp(np) = (p - l )cp(n) 

Deduce from these formula for cp(n) .  

p I n ,  and 
if p%n .  

1 2 .  I f  a and b are positive integers , p and q are primes, and p > q ,  show that 
cp(p") = cp(qh) implies a == 1 .  

* t 1 3 .  Calculate 

for 
(a) n = 12, 1 3 ,  14, 15 ,  16 .  
(b) n = p, p an odd prime. 
(c) n = 2" , k ;o:,  1 .  

L ( - I)"'dcp(d) 
diN 

(d) n == ph' ,  k ;o:,  I and p an odd prime. 
(e) Guess a theorem. 

14 .  Find all n such that 4,j'cp (n) .  

" 1 5 .  Find a positive integer k ,  k > 7, such that cp (n )  "" 2k is  impossible . 

Section 10 

'" 1 .  If  (a, m) 1= 1 ,  for what values of  t is  at "" 1 (mod m)? 

2. Which of the integers from 1975 to 1 985 have primitive roots? 
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* 3 .  Find the smallest prime which has 10 for a primitive root. 

4. Show that 2 is not a primitive root of 3 1 .  

* 5 .  Student A says, " Look. These five pages of computation show that 
1 9831fMl3 ,," 1 (mod 1024) . Isn't that amazing?" Student B says, after a 
glance, " No,  it' s not amazing-it' s wrong. "  How did B know that without 
checking the computations? 

6. Show that if (n. p - 1 )  = 1 ,  then x· "" a (mod p) has exactly one solution. 

t 7. If n is a positive integer, define a-II by 

a-n "" r (mod p) if and only if ran ... 1 (mod p). --

Prove that if m and n are positive integers, a"'a-· ... a"'-· (mod p).  

8. With the notation of Problem 7,  prove that (a"')-" � a-"UI (mod p).  

* 9. It  is well known that at = k if and only if t = loga k. Let us define the index 
of an integer (mod p) analogously. If g is a primitive root of p. then 

g t "" k (mod p)  i f  and only if t "" indo k (mod p - 1 ) .  

Calculate ind2 k (mod 19) for k = 1 ,  2 ,  . , 18 .  

10. With the notation of Problem 9,  prove that 

indo ab "" indo a + indo b (mod p - 1 ) .  

t 1 1 .  With the notation of  Problem 9 ,  prove that 

indo an .., n ind .. a (mod p - 1 ) .  

12 .  Use the results of Problems 9 and to  t o  solve 13x "'" 1 6  (mod 19). 

13. Use the results of Problems 9 and 1 1  to solve xu", 16 (mod 19). 

14 .  Suppose that ind2(P - I )  = r. Show that ind2(p - 2) = r + 1. What is x if 
ind2 x = r + 2? 

t 15. Prove the following generalization of Wilson' s Theorem: 

Section 11 

'" 
IT "�1 

(";,,,)-1 

n 
"" {- I (mod m) if m has a primitive root 

I (mod m )  otherwise. 

* 1 .  Solve x� + x + 1 � 0 (mod 5), x:! + X = 0 (mod 5), and x! + x - I � 0 (mod 
5) .  

2. Find quadratic congruences (mod I I) with solutions 5,  6 ;  5 ,  7;  and 9, t o .  
'" 3 .  Find the quadratic residues (mod 3 1) .  

4. Use Euler's  Criterion to  calculate (mod 23) 21 1 , 3 1 1 , 4 1 1 , 5 1 1 , 221 1 ,  and 2 1 1 1 .  
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'" 5. For which ofp = 3, 5, 7, 1 1 , 1 3 ,  and 17 is Xi "" - 2  (mod p) solvable? 

6. (a) How many solutions does x2 "" 1 (mod 16) have? 
(b) But don't quadratic congruences have two solutions or no solutions? 

What' s wrong? 
'" 7. Does Xi ... 53 (mod 97) have a solution? Does x· "" 97 (mod 53)? 

8.  Suppose that p "" 1 (mod 4). Then x' ''' - }  (mod p) has two solu tions: call 
them i and -i. Prove or disprove: a +  bi "" 0 (mod p) implies a '"  b '"  0 
(mod p).  

*t 9. If p "" 7 (mod 8) and (p - 1 )/2 is prime, is (p - 1 )/2 a quadratic residue 
(mod p)? 

10. Suppose that p = q + an', where p and q are odd primes . Is it true that 
(alp) = (alq)? 

Section 12 

*t 1 .  Theorem 3 had for its hypothesis: "If p and 4p + 1 are both primes 
Examples are 7, 29 and 1 3 ,  53,  and in each of these the third number in the 
sequence (4 · 29 + 1 = 1 17 and 4 · 53 + 1 = 2 1 3) is not prime. Would a 
computer search help in discovering longer sequences such that p, q = 4p 
+ 1 ,  r = 4q + 1 ,  s = 4r + 1 ,  . . .  are all primes? 

2. (a) Show that if p i (n2 + 2an + b) for some n ,  then « at - b)/p) = 1 .  
(b) Which primes can divide n2 + 2n + 2? 

*t 3 .  (a) Show that n2 + (n  + 1 )2  + (n + 2)2 = m2 is impossible. 
(b) Show that n' + (n + 1 )2 + . . .  + (n + k)2 = m2 is impossible whenever P 

+ 22 + . . .  + k2 is a quadratic nonresidue (mod k + 1 ) .  
(c) What are the first three such values of k ?  

4 .  (a) Suppose that p � 5 is prime. Show that - 3 is a quadratic residue (mod 
p) if p '"  1 or 7 (mod 1 2) and a nonresidue if p "" 5 or 1 1  (mod 12).  

(b) Suppose that p is an odd prime, p of 3, and Pja. Suppose that x3 ,.. a 
(mod p) has a solution r. Then 

(x - r)(x2 + xr + r2) "" 0 (mod p). 

Show that x2 + xr + r' "" 0 (mod p )  has two solutions different from r if 
and only if p "" 1 or 7 (mod 12).  

(c) If p � .  5 ,  show that the number of distinct nonzero cubic residues (mod 
p) i s  

p - 1 
(p - 1 )13 

if 
if 

or 
or 

1 1  (mod 1 2) 
7 (mod 1 2). 

t 5. If p = 2'" + 1 is a prime, show that every quadratic nonresidue of p is a 
primitive root of p . 
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Section 13 

*t 1 .  (a) Find a base b such that aa. = 34. 
(b) Find a base b such that aaab = 1842. 
(c) Show that it is impossible for aaab = bbc for positive a ,  b, and c. 

2. What is the smallest positive integer n such that the last digit of n is 1 in the 
bases b, b + 1 ,  and b + 27 

3 .  (a) Show that 1 2 13 = 42, 1 2 14 = Y ,  and 1215 = 6�. 
(b) Guess and prove a theorem. 
(c) Evaluate 169, in base 10  (b 2: 10). 

4 .  Show that 1 1 1. is not a perfect square in any base b , b = 2, 3, . 
t 5. Prove that every positive odd integer can be represented in the form 

n = do + d\ · 2 + dz · 21 +  . . . + dk ' 2�, 

where d; = 1 or - 1 ,  i = 0, 1 ,  . . . , k, but the representation is not unique . 

Section 14 

1 .  Show that the last digit of x" , n = 2, 3 ,  
(a) is  0 if x = 6 
(b) is 4 if x = X 
(c) is x if x = 3, 5 , 7, 8 ,  or e' and n is odd. 

2. With which digits can a prime end? 

3. If n is an even perfect number, n f= 6, show that the last digit in its duodeci­
mal representation is four. 

4. (a) Let n be an integer written in the base do, and let m be its reversal. Show 
that to! (n - m).  

(b) Generalize to any base b .  

t 5. Using the fact that 100 1  = 7 · 1 1 ·  1 7 ,  develop tests for the divisibility o f  an 
integer by 7, 1 1 , and 17 .  

Section 15 

,. 1 .  Student A says, " With enormous labor, I have divided 1 by 3 14 15 ,  and the 
decimal has a period of 15707, half the maximum. It' s  a good thing I didn't  
have to go all the way out to 3 14 14 places . "  Student B says, "You made a 
mistake somewhere . Again." How did B know that without checking the 
calculations? 

2. In the hexadecimal system (base 16, with digits 1, 2, . . . , 9 , A, B, . 
F) find the expansions of 1/2, 113 ,  . . . , lIF. -. 

* 3 . In which bases will the decimal representation of 7/60 terminate? 
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0./22 + aJ/32 + 0';42 + . . .  , O :s aj < i" . 
Does every number between 0 and 1 have such a representation? Is it 
unique? 

" 5 . Both 1 / 13 and 1/ 14 have period 6. Find the next pair of consecutive integers 
such that their reciprocals have the same period . 

Section 16 

t 1 .  Prove that i f  the sum of  two consecutive integers i s  a square, then the 
smaller is a leg and the larger is a hypotenuse of a Pythagorean triangle . 

2. (a) Given a ,  how would you find b such that at + b2 is a square? 
(b) Carry out such a procedure for a = 13 and a = 14. 

t 3.  Let the generators of a Pythagorean triangle be consecutive triangular num­
bers. Show that one side of the triangle generated is a cube. 

4. Note that 4" - 32 = 7 , 1 22 - 52 = 7 . 17, and 82 - 152 = - 7 · 23 .  Show that 
02 + bi = c2 and (7, abc) = 1 imply 7 1  (02 - bi) . 

t 5. Show how to determine all primitive Pythagorean triangles whose area is 
numerically equal to k times its perimeter, k a positive integer. 

t 

Section 1 7  

1 .  

2 . 
3 . 

4. 
5. 

6.  

Given that x� + y�  = z� has no solutions in integers, prove that it has no 
solutions in rational numbers . 

Show that x-· + y-" = z·· , 11 = 1 ,  2, . . .  , has no nontrivial solutions. 

Suppose that we can show that x" + y" = zl' has no nontrivial solutions for 
any odd prime p .  Conclude from this and Problem 2 that xlt + y. = z" has no 
solutions for any n 2: 3 . 
Show that x" + y" = z" implies p i (x + y - z).  

Show that X,,- I + y,H = Z,H has no nontrivial solutions unless p Ixyz. 
Show that 

x3 + y3 + Z3 + x'y + y'z + z'x + xyz = 0 

has no nontrivial solutions .  

*t 7 .  Show that there are infinitely many nontrivial solutions of 

x" + y" = Z"+ I 

for any n 2: 1 ,  namely those given by 

x = (ac)''', y = (bcy" , z = c' , 
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where 

a and b are. arbitrary , and r and s are chosen to satisfy 

rn2 + 1 = (n + 1)s . 

Does the last equation have infinitely many solutions in positive integers r, 
s? 

8 .  Find a solution of X4 + y4  = Z5. 
* 9. Find solutions to x" + y'" = Z"- l . 

10. Show that x" + y" = z'" has nontrivial solutions if (n, m) = 1 .  

Section 18 

1 .  Show that 4 1 (x" + y" + Z1) implies that x, y, and z are even. 

2. Verify that if n "" 7 (mod 8), then n cannot be written as a sum of three 
squares.  

t 3.  From Problems 1 and 2 ,  show that n = 4'(8k + 7) for some nonnegative e 
and k implies that n = x� + y" + z" is impossible. 

4.  A mathematician said in 1621 that 3n + I is not the sum of three squares if 
n = 8k + 2 0r 32k + 9 for some k. Show that he was wrong. 

t 5. Show that not every positive integer n can be written n = x" - y" for some 
integers x, y. 

6. Show that every positive integer n can be written 

for some integers x, y, Z.  
t 7. Show that if n is the sum of two triangular numbers, then 4n + 1 is a sum of 

two squares. 

8. Which integers can be written as the sum of two squares of rational num­
bers? 

>'t 9. Which of 2 + 1 , 2 ' 3  + 1 , 2 ' 3 · 5  + 1 , 2 · 3 · 5 · 7  + 1, . . . can be written as a 
sum of two squares? 

10. Is it possible to mimic the proof of Theorem 2 to prove a generalization: if 
(-w/p) = 1 ,  then there are integers x and y such that p = x: + wy"? 

Section 19 

*t 1 .  Express 5 ,724,63 1 as a sum of four squares. 

2 .  Tabulate the number of different representations of 1 ,  2 ,  3 ,  . . .  as sums of 
four squares, and see if any theorem suggests itself. 
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3. Which integers can be written as a sum of exactly four nonzero squares? 

4. Fill in any missing details in Euler's original proof of Lemma 2. Suppose 
that ( - lip) = 1 .  Then there is an integer x such that 1 + Xi "" 0 (mod p ) .  So, 
suppose that (- l ip )  "" - 1  and that the lemma is false. Then 1 + 1 - 2 = 0 
shows that (- 21p) = - 1 ,  and hence that (21p) = 1 .  Then 1 + 2 - 3 = 0 shows 
that (- 3Ip ) = - 1  and that (3Ip ) = 1 .  In this way, 1 , 2 ,  . . .  , p  - 1 are all 
quadratic residues (mod p ) .  

t 5 .  If  n > 0 and 8 1  n ,  show that n is not the sum of fewer than eight squares of 
odd integers. 

Section 20 

*t -I. If Xk + Yk v'2 = (3 + 2 V2)k· ,  calculate (XkIYk) - V2 for k = 1 ,  2, 3, 4. 
(V2 = i .414213562 . . . .  ) 

2 .  (a) Show that X2 - Ny2 = - 1  has no solutions if N "'" 3 (mod 4). 
(b) Show that ifx, ' Yl is a solution of X! - Ny! = - 1  with x, > 1 ,  then U " , Vk , 

k = 1 ,  2, . . . are solutions of X2 - Ny! '" 1 ,  where 

U k + Vk yIN = (X , + Yl VN)2k . 
t 3. Show that if Xi - Ny! = k has one solution , then it has infinitely many. 

4. Let X,,+ I = X" + ry" and Yn+ 1 = X. + Y" , n = 1 , 2 ,  . . . .  Show that x/ - ry,/ 
takes on only two different values if X02 - /Y02 = 2 .  

'" 5 .  Apply Problem 14 of Section 20  to  extend the sequence of  rational approxi­
mations to v'2 found in Problem I to one more term. 

Miscellaneous Problems 

1 .  Prove that 6 1 (n3 - n )  for all positive integers n .  

2 .  Prove that the sum of three consecutive cubes i s  always divisible by nine . 
3 .  Show that if a + b is even, then 24 1 ab (a2 - b2) . 

4. Show that (2" + ( - 1)1H1)/3 is an odd integer for n 2:: 1 .  

'" 5 .  A man came into a post office and said to the clerk, "Give me some 
13-cent stamps, one-fourth as many 9-cent stamps,  and enough 3-cent 
stamps so this $5 will pay for them all ."  How many stamps of each kind 
did he buy? 

6. Construct a stamp problem for the future: a man bought some 25-cent 
stamps, one-fourth as many 20-cent stamps, and enough lO-cent stamps to 
make the total exactly $ n .  What values ofn, n = 1 , 2, . . .  give a unique 
solution in positive integers? 

'" 7. Stamp problems can be endlessly varied: in a state with no sales tax , 
bottles of scotch sell for $7 each, bottles of rum for $6 each, and bottles of 
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vodka for $5 each. The same disagreeable man as in Problem 5 came into 
a liquor store and said, "Give me some bottles of scotch, half as many of 
rum, and some of vodka. Here's $40. Keep the change-there won' t be 
any, har, har, har." What did he get? 

8 .  Show that the sequence 5 , 12 , 19 , 26 , . . .  contains no term of the form 2(/ 
or 2(/ - 1 .  

. 

t 9. Induce a theorem from the following facts: 

32 + 42 = Y ,  
102 + 1 12 + 122 = 132 + 142, 

2 12 + 222 + 232 + 24' = 252 + 262 + 27', 

362 + 372 + 382 + 392 + 40' = 41'  + 422 + 432 + 442• 

10. A palindrome is a number that reads the same backward as forward, such 
as 3 141413 .  
(a) How many two-digit palindromes are there? 
(b) How many three-digit ones? 
(c) How many k-digit ones? 

1 1 . Let us say that an integer is powerful if and only if p2 1 n whenever p ! n .  
Prove that n = r2s3 for integers r and s where s is square-free-that is, no 
square divides s.  

12. If a and b are positive integers, let us say that a divides b weakly (or, that a 
is a weak divisor of b) ,  written a I b ,  if and only if p l a implies p I b for 
primes p. 
(a) Find examples of integers a and b such that a > b and a I b. 
(b) Prove that a I b implies a I b. 
(c) Prove that a I b and b I c implies a { c. 
(d) Prove that ab I c implies a I c and b I c .  
(e) Prove that ac J bc and (a, c) I (b, c) imply a I b. 
(f) Prove that a J b implies (a, c )I  (b , c) for all positive integers c . 
(g) Prove that if there are integers m and n such that aJ/7 b"', then a J b .  
(h) Prove that a J c and b I c imply a b  J c .  

(i) Which of (c) to (h) are false for ordinary divisibility of positive inte­
gers? Give examples . 

t 13.  Construct a formula forf such thatf(n) is 1 12 if n is even and 1 if n is odd. 

14. Induce a theorem from the following data: 

14 + 14 + 24 = 2 . 32, 

14 + 34 + 44 = 2 . 132, 

24 + 54 + 74 = 2 , 392, 

14 + 24 + 34 = 2 ·  72 , 

24 + 34 + 54 ",, 2 ' 192 , 

34 + 44 '+ 74 = 2 . 372 • 

1 5 .  Use mathematical induction to prove that 6" - 1 + 5 n  (mod 25) . 

16 .  A paper was written recently to show that x3 + 1 17y3 = 5 has no solu­
tions [ 10] . It used the theory of algebraic numbers . Show that the 
equation has no solutions by considering it (mod 9). 
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* 17 .  Find the smallest integer Il such that 11 is positive and 25 1 n ,  36 1 n + 1 ,  
and 49 1 n + 2. 

18. Show that 

2: lid = (T(n )/n . 
din 

*t 19 .  When Ann is half as old as Mary will be when Mary is  three times as 
old as Mary is now, Mary will be five times as old as Ann is  now. 
Neither Ann nor Mary may vote . How old is Ann? 

20. Show that if 
a = r2 - 2rs - S2,  

b = r2 + s' ,  

e = r2 + 21's - S2  

for some integers 1', s ,  then a2 ,  b2 ,  c' are three squares in arithmetic 
progression. 

2 1 . Pascal once wrote that he had discovered that the difference of the cubes 
of any two consecutive integers, less one, is six times the sum of all the 
positive integers less than or equal to the smaller one. Prove that he was 
right. 

22. Show that if n = a' + b2 = c2 + d2 with b l  d, then 

n =  
« a  - C)l + (b - d)2)«(/ + C)2 + (b - d)2) 

4(b - d)2 

and hence that if n can be written as a sum of two squares in two distinct 
ways, then n is composite. 

* 23 . Using the result of Problem 20, factor 
(a) 533 = 23' + 22 = 222 + 72 ; 
(b) 1 073 = 322 + 72 = 282 + 1 72 • 

24. Show that for any a and d such that (3d, m )  = 1 ,  the system 

ax + (a + d)y '" a + 2d (mod m) 

(a + 3d)x + (a + 4d)y "" a + 5d (mod m) 

has the same solution. 

25.  If n = a2 + b" + ct, with a, b, c nonnegative, show that 

(n/3)112 s max(a, b, c) s n 1l2. 

26. Gauss proved that a regular polygon with m sides can be constructed with 
ruler and compass if m = 2un, where a is an integer and 11 = 1 or n is a 
product of distinct primes of the form 2A' + 1 .  List all the regular 
polygons with fewer than 40 sides that can be constructed with ruler 
and compass. 

*t 27. P + 22 = 32 - 22 . 22 + 32 = 72 - 62". 32 + 42 = 132 - 1 22 . 
42 + 5' = 2 J2 - 202. What happens in general? 
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28. It i s  known that 8k + 3 � Xi + y2 + Z2 has a solution for any k � O. 

(a) Show that X ,  y, and z are odd. 
(b) Deduce that k is equal to a sum of three triangular numbers . 

t 29. ( 1/3)2 + (2/3) = ( 113) + (2/3)2. Is this astonishing? 
30. (5 + 5/24)1/2 = 5 + (5/24)112 ; are there other numbers like that? 

*t 3 1 .  (a) Find all a and p such that a! .... -2,  a3 "" 3 ,  and a4 "'" 4 (mod p) with 
O < a < p .  

(b) Show that ai "" 2 ,  a3  ... 3 ,  and a4 "" 4 (mod p) i s  impossible with 
O < a < p .  

32. I f  p � 5 i s  prime, show that pi  + 2 i s  composite. 

t 33. (a) Suppose that O :s  m < 12 1 . If 2IOn + m is prime, show that m is 
prime. 
(b) Generalize: prove that if Pk = PJl2 ' . 'Pk (Pi denotes the i th prime) and 

O :S  m < Pk+I! ' then Pkn + m prime implies m prime. 
34. (a) Find all primes P such that 3p + 1 is a square. 

(b) Find all primes P such that 3p + 2 is a square. 
t 35.  Fermat was sometimes as blind as the rest of us. He wrote to Roberval ,  

"Permit me to ask you for the demonstration of this proposition which I 
frankly confess I have not yet been able to find, although I am assured that 
it is true. If a, b are integers, and if 

( 1) 

both X and x2 are irrationaL" Help Fermat out: show that the equation is 
not satisfied for any integer x, unless a = b = O. 

36. Apply the rational root theorem to complete the demonstration in Prob­
lem 35 .  That i s, show that if ( 1 )  has no integer roots, then it has no rational 
roots. What conditions on a and b guarantee that Xi is irrational? 

37. If n = (6m + 1)( l 2m + 1 )( l8m + 1 ) ,  show that n - 1 is divisible by 36m. 

38. Is . 123456789101 1 12 13 14 15  . . .  a rational number? 
t 39. From the factor table, those numbers n such that IOn + 1 ,  IOn + 3 ,  

IOn + 7 ,  and IOn + 9 are all prime are n = 1 ,  10 ,  19, 82, 148, 1 87, 208, 
. . . . What do those numbers have in common and why? 

40. 36 1 1 0 1 16  and 36 1 100 1 16 .  Coincidence? 'Does 36 1 1 0001 16? Almost any 
pocket calculator can show that is true, but no pocket calculator can show 
that 36 1 1 0" + 1 16 for all n � 2. You do it .  

*t 41.  Bhaskara, in the Lilivaii ( 1 1 50 AD) asked for four numbers whose sum is 
equal to the sum of their squares, and gave the pretty answer 1/3 + 213 + 

3/3 + 4/3 = ( 1 /3)2 + (2/3f + (3/3)1 + (4IW . Find all solutions in positive 
integers of lId + 21d + c/d = ( l id)! + (2Id)! + (c/d)2. 

42. It is fairly striking that 64 "" 4 (mod 19) and 65 "'" 5 (mod 19). Show that a 
necessary condition for ak "" k (mod p) and aH 1 "" k + 1 (mod p) is that 
p i (k + 1)1.: - kH 1 , and find another example. 

t 43 . Show that any proper divisor of an even perfect number is a deficient 
number. 
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44. Show that [2x] = [x] + [x + 112] and [3x] = [xl + [x + 113] + [x + 2/3] .  Can 
you prove a general theorem? 

45. Show that the last digit of every Fermat number 22" + 1 ,  is seven, 
n = 2, 3, . . . .  

46. Find all of the solutions of x2 + y2 = (2x + yr, and show that x' + y2 = 
«X + y)12)2 is impossible in positive integers . 

t 47. In [9] there is a report on a search for numbers with the property that 
the sum of their squares is unchanged if their digits are reversed. The 
example given, 1 7' + 262 + 87' + 492 = 942 + 782 + 622 + 7 1\ is wrong. 
Can you reconstruct the true equality for which this is a misprint? 

48. Show that if 

then a = b = c = o. 

a b 

a c = 1 ,  

b c 

*t 49. February 1968 had five Thursdays.  What other years before 2 1 00 will 
have such Februaries? 

50. Several years ago today, a man borrowed an integer number of dollars 
at a normal rate of simple interest. Today he repaid the loan in full with 
$204 . 1 3 .  How much did he borrow, how long ago,  and at what rate of 
interest? 

*t 5 1 .  (a) Show that ] ]  1 . . . I I  (n digits ,  all ones) is composite if n is 
composite. 

(b) Is the converse true? 

52.  Find all ] 7  solutions of 

1 1 1 
- + - = -
x y 6 

in integers (positive or negative). 
*t 53 .  How many solutions does 

1 1 1 
- + - =  -
x y N 

have for a given positive integer N ?  

54. Prove that the sum o f  twin primes (that i s ,  2p + 2 ,  where p and p + 2 are 
both primes) i s  divisible by 1 2  if p > 3 .  

*t 55. (a) If p i s  a n  odd prime, how many elements in the sequence 

1 ' 2 , 2 · 3 , 3 ' 4 ,  . . .  , p (p + l) 

are relatively prime to p?  
(b) If  p is an  odd prime, how many elements in the sequence 

1 ' 2 , 2 ' 3 , 3 ' 4, . . .  , p2(p2 + 1 )  
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are relatively prime to p? 
(c) Any guesses for a general theorem? 

56. Show that n2 + (n + 1)2 = km2 is possible only when - 1  is a quadratic 
residue (mod k) .  

57. Letf(x) be nonnegative and nondecreasing for x 2:: O. Let us say thatf is  
semimultiplicative if and only iff(nm) 2:: f(n)f(m) for all positive integers 
m and n. 
(a) Show thatfin) = n", k a positive integer, is semimultiplicative. 
(b) Prove that the product of two semimultiplicative functions is semi­

multiplicative. 
(c) Show that if g(x) is nonnegative for x 2:: 0, then nY(II) is semimultiplica­

tive. 

58. If a and b are positive integers, then at ends with an even number of zeros, 
and 1 0bt ends with an odd number of zeros .  Hence 10b1 = at is impossible 
in nonzero integers, and it follows that lOll:! is irrational . 

t 59. 

(a) Adapt the above proof to integers in the base b (b not a square) to 
show that b1 l1 is irrational. 

(b) Show that bl '''' (b not an mth power, m = 3 , 4, . . .  ) is irrational by the 
same argument. 

Consider the following lists: 

List 1 List 2 
9 17  

3 1 1  19  
5 1 3  2 1  
7 15  23  

25 2 10 
27 3 1 1  
29 6 14 
3 1  7 15 

List 8 
8 12 24 28 
9 13 25 29 

10 14 26 30 
1 1  15 27 3 1  

1 8  
19 
22 
23 

26 4 
27 5 
30 6 
3 1  7 

List 16 
16 20 24 
17 2 1  25 
18  22 26 
19 23 27 

List 4 
12  
13  
14 
15  

28 
29 
30 
3 1  

20 
2 1  
22 
23 

28 
29 
30 
3 1  

Pick a number from 1 to 3 1-any number-and see which of the above 
l ists it appears in. If you add the numbers of the lists in which the number 
appears, you will get the number you picked. Why does this trick work? 

60. Let P. = PIP2 · · ·P n  and ak = I + kPn, k = O, I ,  . . .  , n - I , where 
the p 's  are the primes 2, 3, 5, 7, . . .  in ascending order . Show that 
(ai'  aj) = 1 if i ,pI 

t 6 1 .  If n is an even perfect number, show that the harmonic mean of the 
divisors of n is an integer. 

62. (a) Show that the least residues of 1 ,  7, 72 , . . . , 75 (mod 36) are in 
arithmetic progression. 

(b) What are the least residues of 1 ,  7,  7:1 , 7\ . . .  (mod 2 1 6)? 

t 63 . Show that 2rt - 3 is never a square, r = 2, 3 ,  . . .  . 
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64. In 1 494, L. Pacioli said that 1 342 1 7727 was prime. Show that he was 
wrong. 

'" 65. Suppose that a ,  b, and e have no common factor. Show that solutions to 

are given by 

ax + by + ez = 1 

x = 1"1 + el"m + nbld, 
y = st + esm - nald, 
z = li - dm , 

where m and n are arbitrary integers, r and s are such that ar + bs = 
d = (a, b) ,  and t and li are such that dt + eli = 1 ,  and apply this to get 
solutions of 7x + 8y + 9z = 1 .  

. 

66. In a rectangular coordinate system, put a dot at the point (n,  m )  if and 
only if 11 and m are relatively prime. Consider one-by-one boxes. 
(a) Can any such box have all four corners dotted? 
(b) Find a box with no corners dotted. 
(c) Let p be an odd prime. In the row of boxes 

( l , p +  I )  (2, p + I )  (p - l , p + l) (p, p + I )  

IT I I 
( I ,  p) (2, p) (p - I , p) (p, p) 

how many have three corners dotted? 

67. Let IX )  denote the fractional part of x .  That is, ( x )  = x  - [xl . 
(a) Show that if (a,  n) = 1 ,  then the set of numbers 

( aln ) ,  (2aln ) ,  . . .  , « n - 1 )aln ) 

is a permutation of the set 

l in ,  2In , . . ,  (n - 1 )/n . 

(b) Show that if (a ,  n) = 1 ,  then 

� [ak
J = 

( a  - 1)(11 - 1 ) . 
k�O - n 2 

68. Show that every n > 0 satisfies at least one of 

II "" 0 (mod 2) 

n "" 3 (mod 8) 

n ""  0 (mod 3) 

n "" 7 (mod 1 2) 

t 69. Show that 99" ends in 89. 

n "" 1 (mod 4) 

n "" 23 (mod 24). 

70. If p is a prime and ap + b = ct , .  then show that all values of k making 
kp + b a square are given by 
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k = pn2 ± 2cn + a , 

where n is any integer. 

t 7 1 .  If m > 1 is odd, show that 2'" + 1 is composite. 

72. Prove by induction that }"+1 1 10111 - 1 ,  n = 0 , 1 , 2 ,  

*t 73. 2'(23 - 1) = 13 + 33; 

24(25 - 1) = P + 33 + 53 + 73; 

26(27 - 1) = 13 + 33 +  . . . + 1 53 •  

We might induce that every even perfect number, except 6 ,  is a sum of 
consecutive odd cubes, starting with P .  Is this so? 

74 . (a) Given n > 0, show that there is an integer m such that 

(b) Can you always find an m such that 

«n + 1) 112 + n 112)3 = (m + 1 ) 111 + m 1I2? 

t 75. Show that if n is an even perfect number, then IT d is a power of n . 
din 

76. If n is  composite and greater than 4, show that (n - 2) ! "" 0 (mod n ) .  

t 77. Show that the last nonzero digit of n !  i s  even when n > I .  

78. Show that no power o f  2 i s  a sum o f  two o r  more consecutive positive 
integers. 

t 79. Let f(n ) denote the smallest positive integer m such that m !  "" 0 (mod n ) .  
(a) Make a table of  f for n = 2 ,  3 , . . .  , 20. 

* 

*t 

*t 

(b) Show that f(p)  = p .  

(c) Show that if P and q are distinct primes, then f(pq) = max(p, q ) .  
(d) Show that i f  p > k ,  then f(p '") = kp . 

80. Show that 

8 1 .  

82. 

83 . 

84. 

85. 

86. 

" 
2: k !  

k=[ 

is never a square when n > 3. 

Find nine integers in arithmetic progression whose sum of squares is a 
square. 

Let Pi denote the ith prime. Show that PH = PIP • . . .  P. + 1 is never a 
square. 

Which positive integers are neither composite nor the sum of two 
positive composite integers? 

1000 "" 1 (mod 37) .  From this, develop a test for the divisibility of an 
integer by 37.  

Although 9 is  not the sum of two positive integer squares, it is the 
sum of two positive rational squares. Find them. 

Suppose that we have a solution of 



ab(a + b)(a - b) = c· 

where a, b, and c have no common factors. 
(a) Show that a and b are both odd. 
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(b) Show that any two of a, b, (a + b)l2 , and (a - b)12 are relatively 
prime. 

(c) Conclude that each of a, b, (a + b)/2, and (a - b)/2 is a square. 
(d) Put (a + b)12 = ,.2 and (a - b)/2 = S2 . What are a and b in terms of 

r and 5 ?  
(e) Conclude that i f  there i s  a solution of ab (a2 - b2) = c2 where a ,  b ,  C 

have no common factor, then there is a solution of 

,.' - s· = u · .  

87 .  Euler showed that any odd perfect number must be  of  the form 

p an odd prime, a and Q integers . Fill in any missing details in this 
sketch of his proof: 

Let n = PIP • . . .  PIr be the decomposition of n into powers of distinct 
odd primes. Let Q; = (T(P;), i = 1 , 2,  . . . , k. If (T(n) = 2 n ,  then 

2P IP • . . .  PIr = QI Q. · . .  Q". 

Thus, one of QI > Q., . . .  , Qk-say QI-is double an odd number, 
and the remaining ones are odd. Thus p. , P3, • • •  PI< are even powers 
of primes.  Also, PI = p4n+ l for some prime p and integer a .  

88. Write the positive integers in a spiral-like array as shown: 

17 16  15 14  1 3  
1 8  5 4 3 1 2  
1 9  6 1 2 1 1  
20 7 8 9 1 0  
2 1  22 23 

If 1 is  at the origin of a rectangular coordinate system and n 2:: 0, 
(a) What integer is at ( n , O)? 
(b) What integer is  at (n, n)? 
(c) What integer is at (-n, 0)7 
(d) Where i s  (2n + 1)2? 
(e) Where is (2n)2? 
(f) Where i s  1 0007 

89. Show that the primes less than n2 are the odd numbers not included in 
the arithmetic progressions 

for r = 3, 5 , 7 ,  . . . (up to n - 1). 

90. (a) Find all x, y, z in  arithmetic progression such that 
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and xy F O. 
(b) Find all x, y,  z in arithmetic progression such that 

and xy t= o. 

t 9 1 .  Show that x" + y" = z" has no solutions with both x and y less than n for 
any positive integer n. 

92. Suppose that n' + n + 1 = p" , where n c 1 ,  p is prime, and r c 1 .  
(a) Show that P i s  odd. 
(b) Show that if n "" 1 (mod 3) ,  then the only solution is n = 1, p = 3 ,  
r = 1 .  
(c) Show that r is odd. 
(d) Show that if p t= 3, then p "" 1 (mod 3) .  

t 93 . Let f(x) = a"x" + a"_ Ix"- I + . . .  + aQ . Suppose that an;  aQ, and an odd 
number of the remaining coefficients are odd. Show that fex) = 0 has no 
rational roots. 

94 .  (a) Show that if (a, p)  = 1, n l Cp - 1), and a(P-I l/" c;f J (mod p),  then a is 
not an nth power residue (mod p) . 

(b) Is 2 a fifth power residue (mod 3 1 )?  

t 95 . Show that n I (2" + 1 )  if  n is  a power of 3 .  

96 .  (a) Show that n2 + (n + 1 )' = 3m' is impossible. 
(b) What is a sufficient condition for 

to have a solution for given k, k > o? 

*t 97. Let m be square-free. (That is, 
'
m = P IP! ' . 'Pk, a product of distinct 

primes. )  Suppose that m has the property that p I m implies (p - 1) I m.  
(a) Show that m = 2, 6, and 42  have this property. 
(b) Does any other m ?  
(c) How many others? 

98. (a) Show that if r and s satisfy 5"s - 2"r = 1 and x = 5"s , then the last n 
digits of x1 are the same as the last n digits of x. 

(b) Find such a number for n = 3 .  

t 99. Show that the sequence {2 + np } ,  p a n  odd prime, n = 1 , 2,  . . .  , con­
tains an infinite geometric progression for any p. 

100. Solve xex - 3 1 )  = y (y - 4 1 )  in positive integers. 



Appendix 

A 
Proof by Induction 

In the text, the method of proof by mathematical induction is used 
several times.  The purpose of this section is to recall what the method 
is, show some examples of how it operates, and give some problems for 
practice. 

Mathematics is notoriously a deductive art: starting with a collection 
of postulates, theorems are deduced by following the laws of logic . 
That is the way it is presented in print , but that is not the way that new 
mathematics is discovered. It is difficult to sit down and think, "1 will 
now deduce," and deduce anything worthwhile. The goal must be in 
sight: you must suspect that a theorem is  true , and then deduce it from 
what you know. The theorem you suspect is true must come from 
somewhere. Just as in the other sciences, a new result can come at any 
time, the mysterious product of inspiration, inspection, subconscious 
rumination, revelation, or a correct guess. 

* Exercise 1. Guess whatf(n) is from the following data: 

n 1 0  
f(n) 1 

1 2 3 4 5 
o 1 4 9 16 

205 
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"' Exercise 2. Guess whatf(n) is from 

n \ 0  1 2 3 
fen) 1 2 5 10 

4 5 6 
17 26 37 

'" Exercise 3 (optional) . Guess a theorem aboutf(n): 

n \ 1  2 
fen) 2 - 1  

3 4 5 6 7 
-2 - 1  2 7 14 

Since number theory is  largely concerned with the positive integers , 
some of its theorems are of the form, "Such-and-such is true for all 
positive integers n . "  Propositions like this can often be proved by 
mathematical induction (or induction for short-we will not be con­
cerned with any other kind) . This method of proof is based on the fol­
lowing property of positive integers : 

If a set of integers contains 1 ,  and 
(1) if it contains r + 1 whenever it  contains r, 

then the set contains all the positive integers . 

This property is so fundamental that it is usually taken as a nonprov­
able postulate about the positive integers . It is applied when we want 
to show that a proposition pen) about the positive integer n is true for 
all n, n = 1 ,  2, . . . . Examples of such propositions are 

Pl(n): "n2 + 3n + 2 >  (n + 1 )2 - 5 ."  
P2(n): "n(n + l)(n + 2) is divisible by 6. " 
P3(n) : '1(x1 + x2 + . . .  + xnP::f(xl) +f(xz) + . . .  +f(xlt) ." 
Let S denote the set of positive integers for which pen) is  true. If we 

can show that 1 is in S and that if r is in S ,  then r + 1 is in S ,  then ( 1 ) 
says that all positive integers are in  S .  Rephrasing this, we get the in­
duction principle : 

If P(1) is true, and 
if the truth of Per) implies the truth of per + 1) , 
then pen) is true for all n, n = 1, 2 , . . . .  

There is no necessity for an induction to start with 1 ;  we could start 
with 2, 3 , 17, or - 12 . For example, if P (3) is true and if the truth of P (r) 
implies the truth of P Cr + 1 ) , then p en) is true for n = 3 , 4 , . . . . 

'" Exercise 4. Fill in the blank: if P (2) is true, and if the truth of P (r) 
implies the truth of P er + 2) , then P Cn) is true for __ . 
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To illustrate a proof by induction , we will take a well known exam­
ple. Let P en) be the statement 

" 1  + 2 + . . .  + n  = n Cn + 1)/2 ." 

We will prove by induction that P (n) is true for all positive integers n .  

* Exercise 5 .  What i s  P (1)? Is it true? 

Suppose that p er) is true; that is, suppose that 

(2) 1 + 2 + . . .  + r = r(r + 1)/2. 
We wish to deduce that P (r + 1) is true . That is, we want to show that 

(3) 1 + 2 + . . . + (r + 1) = if + 1 )(1' + 2)/2 

follows from (2) . If we add r + 1 to both sides of (2) , we get 

1 + 2 + . . .  + r + (I' + 1) = r(r + 1)/2 + (r + 1) 

= (r + 1) (� + 1 ) = Cr + 1)(r + 2)/2, 
which is (3) . Hence both parts of the induction principle have been 
verified, and it follows that Pen) is true for all positive integers n .  

In any proof by induction, we must not forget to show that P(1) is 
true. Even if we show that the truth of Per) implies the truth of 
PCr + 1), if P(l )  is not true, then we cannot conclude that Pen) is true 
for any n .  For example, let Pen) be 

n + (n + 1) = 2n . 
Suppose that Per) is true. That is, we assume that 

(4) r + Cr + l) = 2r. 
Using this, we have 

(r + 1 )  + (r + 2) = r + (r + 1) + 2 = 21' + 2 = 2(r + 1) , 
so Per + 1 ) is true. So, if P(1) were true, it would follow that Pen) is 
true for all positive integers n. Since P(1) is not true , we cannot so 
conclude. In fact, Pen) is false for all n . 

It should go without saying that in any proof by induction, we must 
verify that the truth of Per) implies the truth of PCr + 1) . For example, 
from the table 

n i l 2 3 4  5 6 
fen) 2 4 6 8 1 0  12 
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_ we cannot conclude thatf(n) = 2n for all n. In fact,J(7) = 71, because 
the function that I had in mind when constructing the table was 

(n - 1)(n - 2)(n - 3)(n - 4)(n - 5)(n - 6)(71 - 14) fen) = 2n + 
6 . 5 . 4 . 3 . 2 

. 

Another form of the induction principle is sometimes used: 

If P(1) is true, and 
if the truth ofP(k) for 1 :s  k :s  r implies the truth ofP(r + 1) , 
then Pen) is true for all n, n = I ,  2, . . . .  

This is valid because of the corresponding property of integers : if a 
set of integers contains 1 ,  and contains r + 1 whenever it contains 
I ,  2, . . . , r , then it contains all positive integers . 

Problems 

1 .  Prove that 

for n = I , 2 ,  

2. 

F + 2' + . . .  + n� = n (2n + l)(n + 1 )/6 

P = 1\ 

p + 2� = 3�,  

P + 2� + 33 = 6� , 

P + 2� + 3') + 43 = 1 02 •  

Guess a theorem and prove it. 

t 3. From Problem 2, or by guessing and induction, derive a formula for 

P + 33 + 53 + . . . + (2k - 1)3,  

k = 1 ,  2 ,  . .  
4. Prove that 

lIl · 2  + 112 · 3  + . . .  + lI(n - 1)1Z = 1 - ( lin ) 

for n = 2, 3 ,  . . . .  

t 5 . 1 ,  3 ,  6, and 10 are called trlaniular numbers: 

Let t. denote the n th triangular number. Find a formula for t • .  
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6. Suppose that aI = 1 and an+J = 2a"  + 1 ,  n = 1 ,  2, . . . .  Prove by in­
duction that a" = 2" - 1 .  

7. Suppose that ao = a I  = 1 and a H I  = a" + 2a"_ , ,  n = 1 ,  2, . .  
Prove by induction that 

2"+1 + ( - 1)" 
a. = 

3 

8. Suppose that aI = a2 = 1 and aHJ = 3 a "  + a .- I '  Prove that ( a " ,  a,,+ l )  
= 1 , n = I , 2 ,  

t 9 .  
1 · 2 · 3 · 4 = 52 - 1 ,  

2 · 3 · 4 · 5  = I P  - 1 ,  

3 · 4 · 5 · 6 = 1 92 - 1 , 

4 · 5  . 6 . 7 = 292 - 1 .  

Guess and prove a theorem . (Induction may not be necessary . )  

1 0. Guess and prove a formula for 

P -r 42 + 72 + .' . .  + (311 + 1)2,  

n = 0, 1 ,  . . . .  

1 1 .  Prove by induction that n(n + J )( n  + 2) is divisible by 6 for n = 1 , 2, . 

1 2. Construct a formula for a function f such that 

f( 1 )  = f(2) = f(3) = f(4) = 0, f(5) = 17 . 

"'t 1 3 .  Let t" denote the nth triangular number. Consider the table 

11 2 3 4 5 

t. ] 3 6 1 0  1 5  

S r.  + I 9 2 5  4 9  S I  1 2 1 .  

Are all those squares a coincidence? 

14.  Prove by induction that n' - n is divisible by 5, n = I ,  2, 

t 15.  The Fibonacci numbers are defined by 

Prove that f,. is divisible by 5, n = 1,  2,  . . . .  
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B 
Computer Problems 

Computers go well with number theory. The reason is that what com­

puters do best is long sequences of calculations,  with a single number 
as a result, and that is often just what is wanted to solve a problem. It 
would be hard to solve a congruence like 3 14159x ... 26535 (mod 
271828 18) by hand, but quite easy to program a computer-or even a 

programmable pocket calculator-to find the solutions : have the ma­

chine do the labor of substituting inx = 1 , 2 ,  . . .  , 27 1828 18  and check 
if the congruence is satisfied. Even if the machine is so slow that it can 
do only 1000 substitutions and checks per second, it will take no more 

than eight hours for it to do them all . Plug it in and let it run all night: 
that is what computers like to do. It is the same when looking for 

solutions to a diophantine equation or seeing if a large integer is prime: 
the machine can grind through hundreds of millions of calculations 

without complaint and produce results which human life would be too 
short to obtain otherwise. 

Applying computers to number theory can also sharpen program­

ming skills . Anyone can write a satisfactory program to print paychecks, 
since most of the time is spent by the relatively slow printer. But when 
a problem requires all the computing power of a machine , the algorithm 
being used can make quite a difference. I have seen programs that 

210 
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factor nine-digit integers almost instantly and others that take months. 
When the machine is being used to its utmost, there is pressure on the 
programmer to push himself to his limits: and this can have only good 
effects. 

Some things which could be programmed are obvious, but neverthe-
less are listed below. 

Write a program to: 

Find greatest common divisors using the Euclidean Algorithm . 

Solve ax + by = (a , b ) . 

Determine if an integer is prime. 

Factor integers (a good factoring subroutine is very helpful in many 
problems) . 

Solve ax + by = c .  
Solve simultaneous congruences using the Chinese Remainder 
Theorem. 

Solve ax "'" b (mod m) .  

Calculate the least residue of ak (mod m) .  

Calculate d (n) ,  (T(n) , 4>(n) .  

Determine if  an integer is deficient or abundant . 

Find primitive roots of an integer. 

Find for which integers a given number is a primitive root. 

Solve x2 "'" a (mod m). 

Solve ax2 + bx + c "" 0 (mod m). 

Evaluate (alp) . 
Find the representation of an integer in one base , given its represen­
tation in another. 

Find the period of the decimal expansion of lIn .  

Find representations of integers as sums of squares, cubes, or higher 
powers. 

Find solutions of x2 - Ny2 = 1 ,  or x2 - Ny2 = k .  

Evaluate 1T{x) .  

There follow 25 other possibilities, listed essentially at random. I d o  not 
know how hard or easy, or how frustrating or rewarding, each one is. 
They are examples of things that have been found interesting, and some 
references have been included. 
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1 .  An amusing game,  a bit like writing integers using exactly four 4s 
(1 = 44/44, 2 = 4/4 + 4/4, 3 = (4 + 4 + 4)/4, . . . ), is to write each 
prime as a difference of two integers whose prime-power decompo­
sitions include just the smaller primes.  For example, 5 = 32 - 22 and 
7 = 52 - 2 . 32• The game gets so hard for larger primes-29 is 3 · 1 1  . 

132 . 19 . 23 - 212 . 5 . 7 . 17-that machine help is needed. This may not be 
easy to program. (Mathematical Reviews 49(1975): #4921 .) 

2 .  The answer to this question is known, but it illustrates how the 
computer can be used to gather data from which inductions can be 
made: What is L(a - 1 ,  n) in terms of n ,  where the sum is taken over 
those integers from 1 to n which are relatively prime to n ?  (Mathe­
matical Reviews 49(1975) : #2506.) 

. 
3 .  It is striking that 145 = 1 !  + 4 !  + 5 ! ,  and the only other integers 

Ie 
satisfying did! . . .  die = 2-d; ! are 1 ,  2, and 40585 (Mathematics Mag-

Ie Ie 
azine 44(197 1) :278-279) . Does d1dz . . .  die ever equal 2- 2d, or 2- y, ? 

i-I i-I 

4. If n = 6, or if n "'" I (mod 6) is prime, or if n = 3p where p "'" 5 
(mod 6) , then 3 1 n + (T(n). Are there any other such n ,  and do they fall 
into classes? 

5. The equation (T(n) = (T(n + 1) has 1 1 3 solutions for n < 101 
(Mathematics of Computation 27( 1�73):676). It is probably too hard to 
extend that table, but related equations like (T(n + 1) = 2(T(n) or 
(f(n + 2) = (T(n) might yield interesting numbers. 

6. Let s (n )  = (T(n ) - n, s2 (n ) = s (s (n » , and sk+ l (n )  = s�k(n » . Cata­
lan' s Conjecture, which dates back to 1887, is that the sequence n, sen) ,  
s2(n) , . . .  eventually either reaches 1 or enters a cycle. The general 
opinion now is that the conjecture is false and that for many n the 
sequence is unbounded. A computer will never be able to establish 
that, of course, but it can discover cycles.  Fourteen cycles of period 4 
exist (for example, s5( 12496) = 12496) and there are longer cycles 
(s28(143 16) = 143 16) . A machine might discover more. It is likely that 
they would be rediscoveries though, so a variation of Catalan' s COI\iec­
ture might be considered, say by defining t(n) = a(n) - n - l .  

7 .  An integer n is semi perfect if n is a sum of distinct proper di­
visors of n. For example, 104 = 23 • 13 is semiperfect because 104 = 

52 + 26 + 13 + 8 + 4 + 1 .  A semiperfect integer is irreducible if it 
is not the multiple of a smaller semiperfect number. For example, 104 is 
irreducibly semiperfect, since none of 2, 4, 8 ,  13 ,  26, or 52 is semiper-
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feet. There is a theorem that n = 21l1p is irreducibly semiperfect if 

2 '" < p < 2m+l .  Are there other irreducible semiperfect numbers? If 
there are , does some theorem exist to explain them? (Mathematical 
Reviews 50(1975) : # 12905) . 

8. The equation 1 + 2 + . . . + n = F + 22 + . . .  + k2 has just four 
solutions, three being ( 1 ,  1 ) ,  ( 10 ,  5) , and ( 1 3 ,  6) . Find the fourth (n is 
less than 1000) , and if a program can do that quickly , adapt it to con­
sider related equations like 1 T + 2" + . . . + n T = 1 "  + 2' + . . . + k' or 
1 + 2 + . . .  + n = a2 + (a + 1)2 + . . . + k2 (Mathematical Reviews 
46( 1973) : #3443 , #8%7). 

9. Ever since the Egyptians were building pyramids, people have 
been concerned with how to write fractions as sums of reciprocals. It is 
known that aln is a sum of three reciprocals, given a , for all sufficiently 
large n .  When a = 4, such representations are known for all n < 107 ,  
and when a = 5 for n < 922321 . Tables of solutions for those values, or 
for a = 6, 7, . . . might disclose interesting patterns. And they might 
not, but one never knows until one tries (Mathematical Reviews 
44(1 972) : #6600; Mathematics Magazine 46(1973) :241-244) . 

1 0. Given sets of integers A = {au a2 , • • •  , an} and B = {b) ,  b2 , 
. . .  , bk} ,  define A + B to be {a; + bj} and A - B to be {a; - bj} , where 
i = 1 ,  2, . . . , n  andj = 1 ,  2, . . .  , k . For example, if A = { I ,  2, 3 } ,  
then A + A = {2, 3 ,  4 ,  5 ,  6} and A - A  = { - 2, - 1 ,  0 ,  1 ,  2} . J . H . 
Conway conjectured that the number of elements in A - A is never less 
than the number of elements in A + A .  This is false (Mathematical 
Reviews 40( 1970) : #2635). One counterexample i s  { I ,  2, 3 ,  5, 8 ,  9 ,  1 3 ,  
1 5 ,  1 6 } .  Other counterexamples could b e  searChed for, but i t  might be 
more interesting to investigate sets like (A + A )  - A and A + (A - A).  

1 1 .  Let fen) = n - 1>(n) ,  pen) = [([(n» , and fk+l(n)  = [([k(n» , and 
consider the sequence n , f(n) , p(n) ,  . . . . Since Jeri) < n ,  it always 
reaches 1 .  For example, if n = 100, the sequence is  60, 44, 24, 16 ,  8 , 4, 
2 ,  1 :  eight steps are needed. Let s (k) be the smallest integer which 
reaches 1 in k steps.  The first few values of s are 

k 1 2 3  4 5 6 7 
s(k) 4 6 10 18  30 42 

and when factored, they are 2 ·  2, 2 ·  3 ,  2 ·  5, 2 · 3 · 3 , 2 · 3  · 5, and 
2 . 3 . 7 .  Could anyone have so little curiosity as to not want to know if 
s (8) was 2 · 3 · 5 ·  7 , 2 · 3 · 3 ·  5, or 2 · 3 ·  1 1 ?  These sequences, analo­
gous to the sequences in Catalan' s Conjecture , have yet to be investi-
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gated, I believe, though the sequences n ,  ¢I(n) ,  ¢I(¢I(n» , . . .  have been 
studied by many writers.  

12 .  Generalize Wilson's Theorem by looking at the values of 
(2p - 1 ) ! (mod pl) ,  (3p - I) ! (mod p3) , (4p - I) ! (mod p4), . . . . The 
result is  known but not easy to prove: with the aid of a machine it could 
be rediscovered (Mathematical Reviews 42(1971 ) :#4477). One might 
then generalize the theorem in a different way, say by looking at 
a (a + 1 )  . . .  (a + p) (mod p) .  

" 
1 3 .  Let sen) = :2. (r, n) .  The first few values of this function, first 

r=l 
studied by S. S. Pillai in 1 933 ,  are 1 , 3 , 5 , 8 , 9 ,  15 ,  1 3 , 20, 2 1 ,  and 25. 
Properties of this sequence might be investigated. It surely has some, 
since sen) - (T(n) is 0, 0, 1 ,  1 , 3 , 3 , 5 , 5, 8 , 8  for n = 1 , 2 ,  . . .  , 10, and 
can that be coincidence? (Mathematical Reviews 48( 1974): #2508). 

14. A search in 1 972 for solutions of a(x· - 1)/(x - 1) = ym with 
1 < a < x s 10, n > 2, and m 2: 2 yielded only n = a = 4, x = 7, m = 2, 
andy = 40 (Mathematical Reviews 46(1973) : # 1703). It is quite possible 
that there are no others, but it might be fun to put a = 1 1  and start 
looking. 

15 .  Triangular numbers ( 1 ,  3 ,  6 ,  10, . . . ) have the form n (n + 1 )/2. 
Palindromes ( 1 1 ,  232, 36763) read the same backward as forward. Find 
some palindromic triangular numbers (Fibonacci Quarterly 12( 1974) : 
209-212) ,  or, if you do not like to repeat work already done, find 
palindromic pentagonal numbers . 

16. Perfect numbers (those such that (T(n) = 2n) and superperfect 
numbers (those such that (T«(T(n» = 2n) have been investigated. But no 
one has looked into superduperperfect numbers (those such that 
(T«(T«(T(n))) = 2n), and there may not even be any. With a good sub­
routine for evaluating (T(n) ,  it shouldn' t  be hard to find any that exist, 
and if there are none, to find solutions of variants like (T«(T«(T(n » )  = 

3n or (T«(T«(T«(T(n» » = 16n . 
17 .  The congruences n(T(n) "'" 2 (mod ¢l(n» and ¢I(n) d(n) "" - 2 (mod 

n) are both true if n is a prime . Find composite solutions. The answers 
are known (Mathematical Reviews 50( 1975): #2049) , but there are other 
such congruences, like ¢I(n)(T(n) "'" - 1  (mod n2) , that no one has looked 
at. 

18 . If n = P 1e'pl' . . . p,/' , define f by J( I) = 2 and fen) = 1 + e lPI + 
e'!Pz + . . .  + elrPk. See what happens to the sequences n, f(n) , f(f(n» , 



Computer Problems 215 

. for various n .  The answer here is also known (Mathematical Re­
views 50(1 975) : #220) , but letting g(n)  = elPl + e'1lJ2 + . . .  + ekPk or 
1 + 2(elPl + e'1lJ2 + . . .  + ekPk) would lead to sequences that might be 
dramatically different. 

19 .  All of the integers n such that <p(n) = <p(n + 1 )  are known up to 
27921 44 (Mathematics of Computation 29(1 975) :321 ) ,  and there is only 
one integer in that range such that <p(n) = <p(n + 1 )  = <p(n + 2) . To ex­
tend the table of solutions beyond 2792144 would take a powerful ma­
chine, but equations like <p(n) = <p(n + 2) are mostly uninvestigated, 
and triplets such that cp(n) = <p(n + 2) = <p(n + 4) or <p(n) = <p(n + 3) = 

cp(n + 6) would be picturesque. 

20. There are many more n such that d en) = d (n + 1 ) ,  and in fact 
triplets are common, the first being d (33) = d (34) = d (35) = 4.  It would 
be interesting to know where the first quadruplet , quintuplet, . . . 
were. 

2 1 .  Every integer greater than 20 1 6 1  is a sum of two abundant num­
bers [ 13] .  What is the largest integer that is not the sum of 3 , 4, 5 ,  . 
abundant numbers? 

22. Given n ,  let ar be its least residue (mod r) and let 
sen)  = a 1  + a2 + . . . + a" .  The first few values of s(n)  are 

n i l 2 3 4 5 6 7 8 9 1 0  1 1  1 2  1 3  
sen) 0 0 1 1 4 5 8 8 1 2  1 3 22 1 7  28 

which looks irregular, but there are regularities: for example, it has 
been known for a long time that s (n) - s (n - 1) + u(n) = 2n - 1 (Math­
ematical Reviews 50(1975): #701 4) .  It would be interesting to have data 
about solutions of equations like s (n) = n ,  s (n) = 2n , s (n) = nl2, and so 
on; some discovery might be waiting to be made. 

23.  Let L(n) = u(n) - (m + 1 ) ; L(n)  is the sum of the proper divisors 
of n .  If L(m)  = n and L(n) = m ,  then m and n are a reduced amicable 
pair. They have been tabulated up to 100000 (Mathematics of Com put a­

, tion 25(197 1) :923-925) . It would be possible to carry the tabulation 
further , or to investigate variations. For example, if n is even, let K (n) 
be the sum of the unobvious proper divisors of n .  That is, 
K(n) c= u(n) - (n + nl2 + 1). Continuing in a parody of high academic 
style, define severely reduced amicable pairs as those integers m and 
n such that K(m) = n and K(n) = m .  Then go to it: a whole new field 
lies unexplored before you. 

24. Carmichael's Conjecture that <p(x) = n never has exactly one 80-
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lution if n � 2 will probably not be settled soon. If such an n exists, it is 
greater than 10400 (Mathematical Reviews 49(1975): #4917) , and those 
numbers are too large for even the most powerful computer to handle. 
For any n ,  there are only a finite number of solutions, and a table exists 
(Mathematical Reviews 41(1 97 1) :  #5291)  giving them up to n = 1978. A 
large enough machine could extend that table, and even a small one 
could compile a table of solutions of (T(x) = n ,  which also has only 
finitely many solutions for given n .  

25. Every positive integer i s  a sum offour squares and of nine cubes. 
What if squares and cubes are mixed? It is probably false that every 
positive integer is a sum of a cube and three squares, but how many 
squares are needed so that every integer is a sum of two cubes and 
some squares? It is true that every positive integer is a sum of eight 
cubes and a square, but can it be done with seven cubes and a square? 
Although a computer cannot prove any theorems, it can indicate 
what theorems to try to prove. 
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c 
Factor Table for Integers 

Less Than 10,000 

The following table gives the smallest prime factor of each odd positive 
integer n ,  3 :s; n :s; 9999, not divisible by five .  The numbers across the 
top of each column-I , 3 ,  7, 9-give the units' digit of n and the 
numbers down the side give the thousands' , hundreds' ,  and tens' digits 
of n .  A dash in the table indicates that n is prime . 

For example , reading across line 40 of the table , we see that 401 and 
409 are prime, 403 is divisible by 1 3 ,  and 407 is divisible by 1 1 .  With the 
aid ofthe table, the prime-power decomposition of any integer less than 
10,000 (and of any even integer less than 20,000) can be quickly deter­
mined. For example, take 759. From line 75 of the table, we see that 
3 1 759, and a division shows that 759 = 3 . 253 . From line 25 of the 
table, 1 1 1 253, so 759 = 3 . 1 1  , 23 .  Line 2 of the table shows that 23 is 
prime, so we have the prime-power decomposition of 759. 

217 
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1 3 7 9  

o - - 3 
1 - - - -
2 
3 
4 
5 
6 
7 
8 
9 

3 - 3 -
- 3 - 3 
- - - 7 

3 - 3 -
- 3 - 3 
- - 7 -

3 - 3 -
7 3 - 3 

10 - - - -
1 1  
12  
1 3  
14 
15  
1 6  
1 7  
1 8  
19  

3 - 3 7 
1 1  3 - 3 
- 7 - -

3 1 1 3 -
- 3 - 3 

7 -- 13 
3 - 3 -

- 3 1 1 3 

20 3 7 3 1 1  
2 1  - 3 7 3 
22 13 - - -
23 3 - 3 -
24 - 3 13 3 
25 - 1 1 - 7 
26 3 - 3 -
.27 - 3 - 3 
28 - - 7 17 
29 3 - 3 13 

30 7 3 - 3 
3 1  ---..:. - - 1 1  
32 3 1 7  3 7 
33 - 3 - 3 
34 1 1  7 - -
35 3 - 3 -
36 19 3 - 3 
37 7 - 13 -
38 3 - 3 -
39 17  3 - 3 

1 3 7 9  

40 - 13 1 1 -
4 1  3 7 3 -
42 - 3 7 3 
43 - - 1 9 -
44 3 - 3 -
45 1 1  3 - 3 
46 - - - 7 
47 3 1 1 3 -
48 1 3  3 - 3 
49 - 17 7 -

50 3 - 3 -
5 1  7 3 1 1  3 
52 - - 17 23 
53 3 13 3 7 
54 - 3 - 3 
55 19 7 - 13 
56 3 - 3 -
57 - 3 - 3 
58 7 1 1 - 19 
59 3 - 3 -

60 - 3 - 3 
6 1  13 - - -
62 3 7 3 17 
63 - 3 7 3 
64 - - - 1 1  
65 3 - 3 -
66 - 3 23 3 
67 1 1 - - 7 
68 3 - 3 1 3 
69 - 3 17 3 

70 - 1 9 7 -
7 1  3 23 3 -
72 7 3 - 3 
73 17 - 1 1 -
74 3 - 3 7 
75 - 3 - 3 
76 - 7 1 3 -
77 3 - 3 19 
78 1 1  3 - 3 
79 7 13 - 17 

1 3 7 9 1 3 7  9 

80 3 1 1 3 -
8 1  - 3 19 3 

120 - 3 17 3 
12 1 7 - - 23 
122 3 - 3 -
1 23 - 3 - 3 
124 17 1 1 29 -
125 3 7 3 -
126 1 3  3 7 3 
127 3 1 19- -
1 28 3 - 3 -
129 - 3 - 3 

82 
83 
84 
85 
86 
87 
88 
89 

3 7 3 -
29 3 7 3 
23 - - -

3 - 3 1 1 
13  3 - 3 
- - - 7 

3 19 3 29 

90 17 3 - 3 
9 1  - 1 1 7 -
92 3 13 3 -
93 7 3 - 3 
94 - 23 - 13 
95 3 8 3 7 
% 3 1  3 - 3 
97 - 7 - 1 1  
98 3 - 3 23 
99 - 3 - 3 

130 --- 7 
1 3 1  3 13 3 -
132 - 3 - 3 
133 1 1 3 1  7 1 3 
134 3 17 3 19 
135 7 3 23 3 
136 - 29 - 37 
137 3 - 3 7 
138 - 3 19 3 
139 13  7 1 1 -

100 
101  
102 
103 
104 
105 
106 
107 
108 
109 

1 10 
1 1 1  
1 1 2 
1 1 3 
1 14 
1 15 
1 16 
1 17 
1 18 
1 19 

7 17 1 9 - 140 
3 - 3 - 141 

- 3 13 3 142 
-- 1 7 - 143 

3 7 3 - 144 
- 3 7 3 145 
- - 1 1 - 146 

3 29 3 13 147 
23 3 - 3 148 
- -- 7 149 

3 - 3 - 150 
1 1  3 - 3 151  
19 - 7 - 152 
3 1 1  3 17 153 
7 3 3 1 3 154 

-- 13 19 155 
3 - 3 7 1 56 

- 3 1 1  3 157 
- 7 - 29 158 

3 - 3 1 1 159 

3 23 3 -
1 7  3 13 3 
7 - - -
3 - 3 -

1 1  3 - 3 
-- 3 1 -

3 7 3 1 3 
- 3 7 3 

3 - 3 -

19 3 1 1  3 
- 17 37 7 

3 - 3 1 1 
- 3 29 3 
23 - 7 -

3 - 3 
7 3 - 3 

- 1 1 19 
3- 3 7 

37 3 - 3 



160 
1 6 1  
1 62 
1 63 
1 64 
1 65 
1 66 
1 67 
1 68 
1 69 

170 
1 7 1  
172 
173 
1 74 
175 
176 
177 
178 
179 

180 
1 8 1  
182 
1 83 
1 84 
185 
1 86 
1 87 
1 88 
1 89 

1 90 
191  
192 
1 93 
194 
1 95 
1 96 
197 
198 
1 99 

1 3 7 9  

- 7 - -
3 - 3 -

- 3 - 3 
7 23 - 1 1  
3 3 1 3 17 

1 3  3 - 3 
1 1 - --

3 7 3 23 
41 3 7 3 
1 9 ---

3 13 3 -
29 3 17 3 
-- 1 1  7 

3 - 3 37 
- 3 - 3 
1 7 - 7 -
3 41 3 29 
7 3 - 3 

1 3 ---
3 1 1 3 7 

- 3 13 3 
- 7 23 17 

3- 3 3 1 
- 3 1 1 3 

7 1 9 - 43 
3 17 3 1 1 

- 3 - 3 

3 7 3 -
3 1  3 7 3 

- 1 1 - 23 
3 - 3 19 

17 3 41 3 
-- 13 7 

3 29 3 -
- 3 19 3 
37 13  7 1 1 

3 - 3 -
7 3 - 3 

1 1 - --
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200 
201 
202 
203 
204 
205 
206 
207 
208 
209 

210 
2 1 1  
212  
213  
214  
215  
2 16  
217  
2 18  
219  

220 
22 1 
222 
223 
224 
225 
226 
227 
228 
229 

1 3 7 9  

3 - 3 7 
- 3 - 3 
43 7 - -

3 19 3 -
13 3 23 3 
7 - 1 1 29 
3 - 3 -

1 9  3 3 1 3 

3 7 3 -

1 1  3 7 3 
-- 29 1 3 

3 1 1 3 -
- 3 - 3 
- - 19 7 

3 - 3 17 
- 3 1 1 3 
1 3 4 1  7 -
3 37 3 1 1 
7 3 1 3 3 

3 1 - - 47 
3 - 3 7 

- 3 17 3 
23 7 - -

3 - 3 1 3 
- 3 37 3 

7 3 1 - -
3 - 3 43 

- 3 - 3 
29 -- 1 1  

230 3 7 3 -
23 1 - 3 7 3 
232 1 1 23 13 17 
233 3 - 3 -
234 - 3 - 3 
235 - 13 - 7 
236 3 17 3 23 
237 - 3 - 3 
238 -- 7 -
239 I 3 - 3 -

240 
24 1 
242 
243 
244 
245 
246 
247 
248 
249 

250 
25 1 
252 
253 
254 
255 
256 
257 
258 
259 

260 
261 
262 
263 
264 
265 
266 
267 
268 
269 

270 
271 
272 
273 
274 
275 
276 
277 
278 
279 

1 3 7  9 

7 3 29 3 
- 1 9 - 41 

3 - 3 7 
1 1  3 - 3 
- 7 - 3 1  

3 1 1 3 -
23 3 - 3 

7 - - 37 
3 1 3 3 1 9 

47 3 1 1 3 

41 - 23 13  
3 7 3 1 1 

- 3 7 3 
- 1 7 43 -

3 - 3 -
- 3 - 3 
13 1 1 17 7 
3 3 1 3 -

29 3 1 3 3 
- - 7 23 

3 19 3 -
7 3 - 3 

- 43 37 1 1  
3 - 3 7 

1 9  3 - 3 
1 1 7 - -
3 - 3 17 

- 3 - 3 
7 -- -
3 - 3 -

37 3 - 3 
- - 1 1 -

3 7 3 -
- 3 7 3 
- 13 41 -

3 - 3 3 1 
1 1  3 - 3 
1 7 47 - 7 

3 1 1 3 -
- 3 - 3 

1 3 7 9  

280 - - 7 53 
281 3 29 3 -
282 7 3 1 1 3 
283 1 9 - - 17 
284 3 - 3 7 
285 - 3 - 3 
286 - 7 47 19 
287 3 1 3 3 -
288 43 3 - 3 
289 7 1  i - 1 3 

290 3 - 3 -
291 4 1  3 - 3 
292 23 37 - 29 
293 3 7 3 -
294 1 7  3 7 3 
295 1 3 - - 1 1 
296 3 - 3 -
297 - 3 1 3 3 
298 1 1  19 29 7 
299 3 4 1 3 -

300 - 3 3 1 3 
301 - 23 7 -
302 3 - 3 13 
303 7 3 - 3 
304 - 17 1 1 -
305 3 43 3 7 
306 - 3 - 3 
307 37 7 17 
308 3 - 3 
309 1 1  3 19 3 

310 7 29 1 3 
3 1 1  3 1 1 3 
3 12 - 3 53 3 
3 13 3 1 1 3 - 43 
3 14 3 7 3 47 
3 1 5  23 3 7 3 
3 16 29 - -
3 17 3 1 9  3 1 1  
3 18 - 3 - 3 
3 19 - 3 1 23 7 
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1 3 7  9 

320 3 - 3 -
32 1  13  3 - 3 
322 - 1 1 7 -
323 3 53 3 4 1 
324 7 3 17 3 
325 - - - -
326 3 13 3 7 
327 - 3 29 3 
328 17 7 19 1 1 
329 3 37 3 -

330 - 3 - 3 
33 1 7 - 3 1 -
332 3 - 3 -
333 - 3 47 3 
334 1 3 - - 17 
335 3 7 3 -
336 - 3 7 3 
337 -- 1 1 3 1 
338 3 17 3 -
339 - 3 43 3 

340 19 4 1 - 7 
34 1 3 - 3 13 
342 1 1  3 23 3 
343 47 - 7 19 
344 3 1 1 3 -
345 7 3 - 3 
346 - - - -
347 3 23 3 7 
348 59 3 1 1 3 
349 - 7 1 3 -

350 3 3 1  3 1 1 
351  - 3 - 3 
352 7 1 3 - -
353 3 - 3 -
354 - 3 - 3 
355 53 1 1 - -
356 3 7 3 43 
357 - 3 7 3 
358 -- 17 37 
359 3 - 3 59 

1 3 7 9 

360 13 3 - 3 
36 1 23 - - 7 
362 3 - 3 19 
363 - 3 - 3 
364 1 1 - 7 4 1  
365 3 13 3 -
366 7 3 19 3 
367 - - - 1 3  
368 3 29 3 7 
369 - 3 - 3 

370 - 7 1 1 -
37 1 3 47 3 -
372 61 3 - 3 
373 7 - 37 -
374 3 19 3 23 
375 1 1  3 13 3 
376 - 53 - -
377 3 7 3 -
378 19 3 7 3 
379 17 - - 29 

380 3 - 3 3 1 
3 8 1  37 3 1 1 3 
382 - - 43 7 
383 3 - 3 1 1 
384 23 3 - 3 
385 - - 7 17 
386 3 - 3 53 
387 7 3 - 3 
388 - 1 1 13 -
389 3 \7 3 7 

390 47 3 - 3 
391 - 7 - -
392 3 - 3 -
393 - 3 3 1 3 
394 7 - - 1 1 
395 3 59 3 37 
396 17 3 - 3 
397 1 1  29 4 1 23 
398 3 7 3 -
399 13 3 7 3 

1 3 7 9  

400 - -- 19 440 
401 3 - 3 - 441 
402 - 3 - 3 442 
403 29 37 1 1  7 443 
404 3 13 3 - 444 
405 - 3 - 3 445 
406 3 1 17 7 13 446 
407 3 - 3 - 447 
408 7 3 61 3 448 
409 - - 17 --':'" 449 
410 3 1 1 3 7 450 
4 1 1 - 3 23 3 45 1 
4 12  13 7 - - 452 
4 13 3 - 3 - 453 
4 14 4 1  3 1 1 3 454 
415  7 - - -'- 455 
4 1 6  3 23 3 1 1 456 
417 43 3- 3 457 
418  37 47 53 59 458 
419 3 7 3 13 459 

420 - 3 7 3 460 
421 - 1 1 - - 461 
422 3 4 1 3 - 462 
423 - 3 19 3 463 
424 -- 3 1 7 464 
425 3 - 3 - 465 
426 - 3 17 3 466 
427 -- 7 1 1 467 
428 3 - 3 - 468 
429 7 3 - 3 469 
430 I I  13 59 3 1  470 
43 1 3 19 3 7 47 1 
432 29 3 - 3 472 
433 6 1  7 - - 473 
434 3 43 3 - 474 
435 19 3 - 3 475 
436 7 - I I  17 476 
437 3 - 3 29 477 
438 13 3 4 1 3 478 
439 -23 - 53 479 

1 3 7 9 

3 7 3 -
1 1  3 7 3 
- - 19 43 

3 1 1  3 23 
- 3 - 3 
- 6 1 - 7 

3 - 3 41 
17  3 1 1 3 
- - 7 67 

3 - 3 1 1 

7 3 - 3 
13 ---
3 - 3 7 

23 3 13 3 
19 7-
3 29 3 47 

- 3 - 3 
7 17 23 1  9 
3 - 3 i3 

- 3 - 3 

43 - 17 1 1 
3 7 3 3 1 

- 3 7 3 
1 1 4 1 -
3 - 3 

- 3 --
59 - 1 3 

3 - 3 
3 1  3 43 
- 1 3 7 3  

3 - 3 1  
7 3 53 

- - 29 
3 - 3 

I I  3 47 
- 7 67 

3 1 1  3 1 
13 3 17 
7 - -
3 - 3 

3 
7 

3 
7 

7 
3 

7 
3 

9 
3 



480 
481 
482 
483 
484 
485 
486 
487 
488 
489 

490 
491 
4 
4 
92 
93 

494 
4 
4 

95 
% 

497 
498 
499 

500 
501 
502 
503 
504 
505 
506 
5 07 
508 
509 

510 
5 1 1  
5 1 2  
5 1 3  
5 14  
5 15  
5 16  
5 1 7  
5 1 8  
5 1 9  

1 3 7 9 

- 3 1 1 3 520 
17 - - 61 521 
3 7 3 1 1 522 

-'- 3 7 3  523 
47 29 37 13 524 

3 23 3 43 525 
- 3 3 1 3 526 
- 1 1 - 7 527 

3 19 3 - 528 
67 3 59 3 529 

13 - 7 - 530 
3 17 3 - 53 1 
7 3 1 3 3 532 

- - - 1 1  533 
3 - 3 7 534 

- 3 - 3 535 
1 1 7 - - 536 

3 - 3 13 537 
17 3 - 3 538 
7 - 1 9 - 539 

3 - 3 - 540 
- 3 29 3 54 1 
- - 1 1 47 542 

3 7 3 - 543 
7 1  3 7 3 544 
- 3 1 1 3 - 545 

3 61 3 37 546 
1 1  3 - 3 547 
- 13 - 7 548 

3 1 1 3 - 549 

- 3 - 3 550 
1 9 - 7 - 55 1 

3 47 3 23 552 
7 3 1 1 3 553 

53 37 - 19 554 
3 - 3 7 555 

13 3 �  3 556 
- 7 3 1 - 557 

3 71 3 - 558 
29 3 - 3 559 
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1 3 7 9  1 3 7 9  1 3 7 9  

'7 1 1 41 - 560 3 13 3 7 1 600 17  3 - 3 
3 13 3 17  561 3 1  3 4 1 3 601 - 7 1 1 13 

23 3 - 3 562 7 - 17 1 3 602 3 1 9 3 -
- - - 13 563 3 43 3 - 603 37 3 - 3 

3 7 3 29 564 - 3 - 3 604 7 - - 23 
59 3 7 3 565 - - - - 605 3 - 3 73 
- 19 23 1 1  566 3 7 3 - 606 1 1  3 - 3 

3 - 3 - 567 53 3 7 3 607 13 - 59-
- 3 17 3 568 13 - 1 1 - 608 3 7 3 -
1 1 67 - 7 569 3 - 3 4 1 609 - 3 7 3 

3 - 3 - 570 - 3 1 3 3 610 - 17 3 1 41 
47 3 1 3 3 571  - 29 - 7 6 1 1  3 - 3 29 
1 7 - 7 73 572 3 59 3 1 7 612 - 3 1 1 3 
3 - 3 1 9 573 1 1  3 - 3 613  -- 17 7 
7 3 - 3 574 - - 7 - 614 3 - 3 1 1 

- 53 1 1 23 575 3 1 1 3 1 3 6 15  - 3 47 3 
3 3 1 3 7 576 7 3 73 3 616  61 - 7 3 1 

41 3 19 3 577 29 23 53 - 617  3 - 3 37 
- 7 - 17 578 3 - 3 7 618  7 3 23 3 

3 - 3 - 579 - 3 1 1 3 619 4 1 1 1 - -

1 1  3 - 3 580 - 7 - 37 620 3 - 3 7 
7 - -- 581 3- 3 1 1 621 - 3 - 3 
3 1 1  3 61 582 - 3 - 3 622 - 7 1 3 -

- 3 - 3 583 7 19 13 - 623 3 23 3 17 
- - 1 3 - 584 3 - 3 - 624 79 3 - 3 

3 7 3 53 585 - 3 - 3 625 7 13 - 1 1  
43 3 7 3 586 - 1 1 - - 626 3 - 3 -
- 13 -- 587 3 7 3 - 627 - 3 - 3 

3 - 3 1 1 588 - 3 7 3 628 1 1 61 - 19 
17  3 23 3 589 43 7 1 - 17 629 3 7 3 -

- - - 7 590 3 - 3 19 630 - 3 7 3 

3 37 3 - 591  23 3 61 3 63 1 - 59 - 71 

- 3 - 3 592 3 1 - - 7 632 3- 3 -

- 1 1 7 29 593 3 17 3 - 633 13 3 - 3 

3 23 3 3 1 594 1 3  3 19 3 634 1 7 - 1 1  7 

7 3 - 3 595 1 1 - 7 59 635 3 - 3 -

67 - 19 - 596 3 67 3 47 636 - 3 - 3 

3 - 3 7 597 7 3 43 3 637 23 - 7 -

- 3 37 3 598 - 3 1 - 53 638 3 13 3 -

- 7 29 1 1  599 3 13 3 7 639 7 3 - 3 
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1 3 7 9  

640 37 19 43 13 
641 3 1 1 3 7 
642 - 3 - 3 
643 59 7 41 47 
644 3 17 3 -
645 - 3 1 1 3 
646 7 23 29 -
647 3 - 3 1 1 
648 � 3 13 3 
649 - 43 73 67 

650 3 7 3 23 
65 1 17 3 7 3 
652 - 1 1 61 -
653 3 47 3 13 
654 3 1  3 - 3 
655 - - 79 7 
656 3 - 3 -
657 - 3 - 3 
658 - 29 7 1 1 
659 3 19 3 -

660 7 3 - 3 
66 1 1 1 17 1 3 -
662 3 37 3 7 
663 19 3 - 3 
664 29 7 17 61 
665 3 - 3 -
666 - 3 59 3 
667 7 - 1 1 -
668 3 41 3 -
669 - 3 37 3 

670 - - 19-
67 1 3 7 3 -
672 1 1  3 7 3 
673 53 - - 23 
674 3 1 1 3 17 
675 43 3 29 3 
676 - - 67 7 
677 3 1 3 3 -
678 - 3 1 1 3 
679 - - 7 13 

1 3 7 9 

680 3 - 3 1 1 
68 1 7 3 17 3 
682 19 - - -
683 3 - 3 7 
684 - 3 41 3 
685 1 3  7 - 19 
686 3 - 3 -
687 - 3 13 3 
688 7 - 7 1 83 
689 3 61 3 -

690 67 3 - 3 
691 - 3 1 - 1 1  
692 3 7 3 13 
693 29 3 7 3 
694 1 1 53 - -
695 3 17 3 -
696 - 3 - 3 
697 - 19 - 7 
698 3 - 3 29 
699 - 3 - 3 

700 - 47 7 43 
701 3 - 3 -
702 7 3 - 3 
703 79 13 3 1 -
,704 3 - 3 7 
705 1 1  3 - 3 
706 23 7 37 -
707 3 1 1 3 -
708 73 3 19 3 
709 7 4 1 47 3 1  

710 3- 3 -
7 1 1  1 3  3 1 1 3 
7 1 2  - 17 - -
7 1 3  3 7 3 1 1 
714 37 3 7 3 
7 1 5  - 23 17 -
7 16 3 13 3 67 
7 1 7  7 1  3 - 3 
7 1 8  43 1 1 - 7 
7 19 3 - 3 23 

1 3 7 9 

720 19  3 - 3 
721 - - 7 -
722 3 3 1 3 -
723 7 3 - 3 
724 1 3 - - 1 1  
725 3 - 3 7 
726 53 3 13 3 
727 1 1  7 19 29 
728 3 - 3 37 
729 23 3 - 3 

730 7 67 - -
73 1 3 71 3 13 
732 - 3 17 3 
733 - - 1 1 41 
734 3 7 3 -
735 - 3 7 3 
736 1 7 37 53 -
737 3 73 3 47 
738 1 1  3 83 3 
739 1 9 - 13 7 

740 3 1 1 3 3 1 
741 - 3 - 3 
741. 4 1 13  7 17 
743 3 - 3 43 
744 7 3 1 1 3 
745 - 29 - -
746 3 17 3 7 
747 3 1  3 - 3 
748 - 7 - -
749 3 59 3 -

750 13 3 - 3 
75 1 7 1 1 - 73 
752 3 - 3 -
753 17 3 - 3 
754 - 19 - -
755 3 7 3 -
756 - 3 7 3 
757 67 - - 1 1  
758 3 - 3 -
759 - 3 7 1 3 

760 
76 1 
762 
763 
764 
765 
766 
767 
768 
769 

770 
771 
772 
773 
774 
775 
776 
777 
778 
779 

780 
781  
782 
783 
784 
785 
786 
787 
788 
789 

790 
79 1 
792 
793 
794 
795 
796 
797 
798 
799 

1 3 7 9  

1 1 - - 7 
3 23 3 19 

- 3 29 3 
13 17 7 -
3 - 3 -
7 3 13 3 

47 79 1 1 -
3 - 3 7 

- 3 - 3 
- 7 43 

3 - 3 13 
1 1  3 - 3 
7 - - 5  
3 1 1 3 7  

- 3 61 
23 - -

3 7 3 1  
19 3 7 
3 1 43 13  

3- 3 1  

29 3 37 
73 13 -

3 - 3 
4 1  3 17 

9 
1 
3 

7 
3 

1 

3 
7 

- 1 1 7 4  
3 
7 
9 
3 

3 - 3 2  
7 3 -

17 --
3 - 3 

13 3 53 

- 7 - 1 
3 4 1 3 

89 3-
7 - - 1  
3 13 3 

- 3 73 
19 - 3 1 1 
3 7 3 7  

23 3 7 
61 - 1 1 1 

7 
3 

3 
7 

3 
3 
9 
3 
9 



1 3 7  9 
---
800 3 53 3 - 840 
801 - 3 - 3 841 
802 13 7 1 23 7 842 
803 3 29 3 - 843 
804 11 3 13 3 844 
805 83 - 7- 845 
806 3 1 1 3 - 846 
807 7 3.41 3 847 
808 -59-- 848 
809 3 - 3 7 849 
810 - 3 1 1 3 850 
8 1 1 - 7 - 23 85 1 
8 ] 2  3 - 3 1 1 852 
8 1 3  47 3 79 3 853 
814 7 17 -29 854 
8 15  3 3 1 3 41 855 
8 16  - 3- 3 856 
8 1 7  - 1 1 1 3 - 857 
8 ] 8  3 7 3 19 858 
8 19  - 3 7 3 859 
820 59 13 29- 860 
82 1 3 43 3 - 861 
822 - 3 19 3 862 
823 --- 7 863 
824 3 - 3 73 864 
825 37 3 23 3 865 
826 1 1 - 7 - 866 
827 3 - 3 17 867 
828 7 3 - 3 868 
829 ---43 869 
830 3 19 3 7  870 
83 1 - 3 - 3 87 ] 
832 53 7 1 1 - 872 
833 3 13 3 3 1 873 
834 19 3 17 3 874 
835 7 - 61 13 875 
836 3 - 3 - 876 
837 1 1  3 - 3 877 
838 17 83 -- 878 
839 3 7 3 37 879 
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1 3 7  9 1 3 7 9  

3 1  3 7 3 880 13 --23 
13 47 19- 88 1 3 7 3 -
3 - 3 - 882 - 3 7 3 

- 3 1 1 3 883 - 1 1 - -
23 -- 7 884 3 37 3 -
3 79 3 1 1 885 53 3 17 3 

- 3 - 3 886 - - - 7 
43 37 7 61 887 3 19 3 13  
3 17  3 13  888 83 3 - 3 
7 3 29 3 889 1 7- 7 1 1 

- 1 1 47 67 890 3 29 3 59 
3 - 3 7 891 7 3 37 3 

- 3 - 3 892 1 1 - 79-
19 7 - - 893 3 - 3 7 
3 - 3 83 894 - 3 23 3 

17  3 43 3 895 - 7 13 1 7  
7 - 13 ] 1  896 3 - 3 -
3 - 3 23 897 - 3 47 3 

- 3 3 1 3 898 7 1 3 1 1 89 
1 1 13 -- 899 3 17 3 -
3 7 3 - 900 - 3 - 3 

79 3 7 3 901 --71 29 
37 --- 902 3 7 3 -
3 89 3 53 903 1 1  3 7 3 

- 3 - 3 904 - - 83 -
41 17 1 1  7 905 3 1 1 3 -
3 - 3 - 906 13  3 - 3 

1 3  3 - 3 907 47 43 29 7 
- 19 7- 908 3 3 1 3 61 
3 - 3 - 909 - 3 1 1 3 
7 3 ,- 3 910 19- 7 -

3 1 - 23 - 91 1 3 3 1 3 1 1 
3 1 1 3 7 912 7 3 - 3 

- 3 - 3 9 1 3  23 -- 13 
- 7 - 13 914 3 41 3 7 
3 - 3 19 9 15  - 3 - 3 

- 3 1 1 3 9 16  - 7 89 53 
7 3 1 67 - 917  3 - 3 67 
3 - 3 1 1 9 1 8  - 3- 3 

59 3 19 3 9 19  7 29 17 -

920 
92 1 
922 
923 
924 
925 
926 
927 
928 
929 
930 
93 1 
932 
933 
934 
935 
936 
937 
938 
939 
940 
941 
942 
943 
944 
945 
946 
947 
948 
949 
950 
95 1 
952 
953 
954 
955 
956 
957 
958 
959 

1 3 7  9 

3 - 3 -
61 3 1 3  3 
-23 - 1 1  
3 7 3 -

- 3 7 3 
1 1 19-47 
3 59 3 1 3 

73 3 - 3 
--37 7 
3- 3 17 

7 1  3 41 3 
- 67 7-
3- 3 19 
7 3 - 3 

-- 13 
3 47 3 7 

1 1 3 17 3  
- 7 - 83 
3 1 1 3 4 1 

- 3 - 3 
7-23 97 
3- 3 

- 3 1 1 3 
---
3 7 3 I ]  

13 3 7 3 
--- 1 
3- 3 

19 3 53 
- 1 ] -
3 13 3 3  

- 3 31 
-89 7 ]  
3 - 3 
7 3 -

-41 19 1 
3 73 3 

17  3 61 

7 

3 
7 
7 
3 
3 

1 1  7 - 4  

3 
1 
7 
3 
3 
9 3 53 3 2  
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1 3 7  9 

960 - 3 13 3 
%1  7 - 59 -
%2 3 - 3 -
%3 - 3 23 3 
964 3 1,.- 1 1 -
%5 3 7 3 13 
%6 - 3 7 3 
%7 19 17 - -
%8 3 23 3 -
969 1 1  3 - 3 

1 3 7 9 

970 89 3 1 18  7 
97 1 3 1 1 3 -
972 - 3 7 1 3 
973 37 - 7 -
974 3 - 3 -
975 7 3 1 1 3 
976 43 1 3 --
977 3 29 3 7 
978 - 3 - 3 
979 - 7 97 41 

1 3 7 9 

980 3 - 3 17 
98 1 - 3 - 3 
982 7 1 1 3 1 -
983 3 - 3 -
984 13 3 43 3 
985 - 59 - -
986 3 7 3 71 
987 - 3 7 3 
988 4 1 -- 1 1  
989 3 13 3 19 

990 
991 
992 
993 
994 
995 
996 
997 
998 
999 

1 3 7 9  

- .3 - 3 
1 1 23 47 7 
3 - 3 

- 3 19 3 
- 6 1  7 

3 37 3 2  3 
3 
7 
7 
3 

7 3 -
1 3 - 1 1 1 
3 67 3 

97 3 13 
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Answers to Selected Exercises 

Section I 

1. All of them . 

4. 2 , 5 , 2 .  

5 .  I ,  n .  

Section 2 

1 .  One, one. 

3. 72 = 23 ' 3\ 480 = 25 . 3 . 5 .  

Section 3 

6. d. 

7.  3, 3 ;  3 ,  O. 

9. 7, 34. 

4. 25, 45, 65, 8 1 ,  and 85 . 

S. 2 . 3 . 52 . 53 .  

1 .  The left-hand side is  even ; the right-hand side is  odd . 

2. All solutions are x = 5 t , Y = 2 - t ,  t an integer. 

3.  (c) . 

4. x = 10 + 3t ,  y = -t , t an integer. 

5. x = 6, y = 1 and x = 3, y = 2 .  

Section 4 

1. True, true, false , true. 

2. Then km = a - b, SO m I (a - b) and a "" b (mod m).  

3. 1 , 7, 9, 4 , and 8 .  

4 .  n '"  1 (mod 2 ) .  n = 1 + 2k  for some k. n leaves a remainder of 1 when 
divided by 2 .  

227 
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10. For example , 5 · 4 ,.. 5 . 6 (mod 10) , but 4 ",  6 (mod 10). 
11. (a) x - 2 (mod 7), (b) x "'"  4 (mod 7). 

12. x '"  2 (mod 3) . 

Section 5 

1. For example, 4x - 3 ,  5x "" 4, 6x "" 6 (mod 12) have, respectively, 0, 1 ,  and 
6 solutions. 

2. (b) , (c) , and (d) have no solutions. 

3. This is included in Theorem I .  

4 .  (a) 2 ,  (b) x = - 1  + 1Ot, y = 2 - 9t . 
5. 3 , 1 , 5, 0, 1 .  
6. x = 2 , 5 , 8 ,  1 1 ,  or 14. 
7. 2 ,  7 ,  12; 2; none; 2. 

Section 6 

2. 10, 1 . 

Section 7 

n 

I
I I  12 1 3  14 15 16 

den) 2 6 2 4 4 5. 
1. 

2. d(p3) = 4. d(p") = n + 1. 
3. d(p�q) = 8 . d(p"q) = 2(n + 1). 
4. 20. 

n 
I 

9 10 1 1  12  13 14 
a-(n) 13 18 12 28 14 24 

5. 

6. a-(p3) = 1 + P + p2 + p3 . a-(pq) = 1 + P + q + pq . 
8. a-(p") = 1 + P + pi + . . . + p" = (p" + !  - 1 )/(p - 1 ) . 
9. a-(240) = 744 . 

10. n 1 13 14 15 16 17 18 19 20 2 1  22 23 24 
fen)  32 6 4 12 

Section 9 

S. 1 , 3 . 1 , 3 , 5 , 7. 1 , 3 , 5, 7 , 9 , 1 1 , 13 , 15 .  4>(2") = 2"- 1 ,  the number of odd 
positive integers less than 2" . 

7. 4>(m) .  
8 .  24 , 36 ,  36. 
9. (a) 12, 13, 14, 15, 16. (b) 21.:. (c) p '. 

10. C1 � { l , 3 ,  5 , 9, 1 1 ,  13} , C. = {2,  4, 6, 8 ,  10, 12} ,  C7 = {7} , C14 = { 14} .  



Section 10 

1 .  2, 2, and 2 .  

Answers t o  Selected Exercises 229 

2.  1 , 2, 3 ,  or 6. 2 and 5 have order six , 4 and 7 have order three, 8 has order 
two, and 1 has order one. 

3. 191  (39, 77, 1 1 5 ,  and 1 53 are composite). 

5. 3 and 7 are primitive roots of 1 0. 

Section 1 1  

1 .  x· + 4x + 3 "" 0 (mod 5). 7. 1 , 1 , 1 , 1 .  

2.  (x + 2)2 "" 1 (mod 5). 8.  1 ,  1 ,  1 .  

3. 2 and 4 .  9. I f  p ,r a ,  then (a2/p) = 1 .  

4 .  2 and p - 2 .  1 3 .  I ,  1 .  

5 .  1 , 2 ,  and 4. 14.  5 ,  13,  17 .  

6. 1 5  and 1 6. 15. - 1 ,  - ] . 

Section 12 

2 .  No solution. 

Section 13 

1 . 3 1 = 24 + 23 + 22 + 2' + 2° . 33 = 2" + 2° .  

2 .  6, 7 .  

3 .  n '  < 2T. Hence r > e ;  for all i . 
4. 9 , 7, 64. 

5 .  l�, 1 0 1 002, I I OO I oo� .  

SectiOil 1 4  

1 .  1 1 , 1 9, 1 10, 6X. 

3. 28, 40, 6X6. 

4. 8. 

5. 371 , 275. 

6 . . 1 86X35 

Section 15 
1 .  73/4950. 

2 . . 17073. 

3. 4, 2, 2 .  

4 .  7, 6, 5. 

5 . . 02439. 

6. 5 .  
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Section 16 

1. If p divides any two of x , y ,  and z ,  then it divides the third. 

2. Because 2 would divide (a , b ) . 

Section 17 

1.  c� '" 2 (mod 4) is  impossible. 
6. Because n = 2 v�. Because b' = mt - nt. 

7. If n = 0, then a:! = 2mm = 0,  and a, b, c would be a trivial solution. 

Section 18 

2. 325 - 18:! + F. 

Section 19 

Section 20 

1 .  The smallest solutions are 32 - 2 . 22 = 1 and 22 - 3 . J2 = I . 

2. If x - my = x + my = I ,  then 2x = 2. The other case is similar. 

3. 99, 35.  
4. (r + sN"l)k(r - SN"l)k = (rt - NS1)k = 1'" = I . 

5. Let a = c = X I and b = d = YI in Lemma 1 .  

6. 7 , 4 and 26, 1 5 .  

Section 21  

1 .  1 ,  9, 8 ,  4. 3. 10, 5.  

2. 20, 70 . 4. 1979. 

Appendix A 

1 .  fen) = (n - 1)2.  4. All positive even integers. 
2. fen)  = nO + I .  5. " I  = 1 ·  212 . "  Yes. 
3. fen ) = n :!  - 6n + 7. 



Answers to Selected Odd-Numbered 
Problems 

Section 1 

1 .  1 and 592. 

3. One solution is x = -40,  Y = 79. 

1 1 .  (b) Yes. 

Section 2 

1 .  2 , 617, 2B · 3L 5 ,  3 - 7 ' 1 1 ' 13 - 37.  

7 . . 60466176. 

9. No. 

Section 3 

1 1 .  (b) No. 

13.  False. 

15.  No. 

1.  x = 1 + t ,  Y = 1 - t ;  x = 3 + 4t,  y = 1 + 3t ; x = - 1  + 16t, y = 2 - 1 5 t ; t an 
integer. 

3. x = 1 ,  Y = 1 ;  x = 3 + 4t,  y = 1 + 3 t ,  t = 0, 1 ,  . . .  ; x = 1 ,  Y = 6 and x = 3 ,  
y = 1 . 

5. tx ,  y ,  z) = (22, 8 , 1 ) ,  (23 , 6, 2) , (24, 4, 3) ,  or (25 , 2 , 4) . 

7. Nine apples at 91t each and three oranges at 6jt each. 

9. If the first merchant had d, the second had 3d,  the third 5d, and the purse 
15d.  
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Section 4 

1. 0, 2, 78. 

5. 1 , 2, 5 ,  10, 7 1 , 142, 355, or 
7 10. 

7. 3 .  

Section 5 

1. 9; 6; 2, 8, 14 ;  1752. 

1 1 .  6. 

13. 0, 1 , 5 , or 6  

17. A is. 

3. x iii I (mod 6), x "'" 348 (mod 385), x "" 10:8 (mod 385) . . 

5. 0, 1 ,  2, 4 ,  5, 1 0, or 20 solutions .  
7. 1292. 

9. x = 3, Y = 0; x = 5, Y = 5 .  

1 1. 17,  157 ,  or other larger and more unlikely numbers. 
13. 213 .  
15. 30233088000000. 

19. (mi o  mj ) ! (a j  - aj )  for alI i andj, i fj .  

Section 6 

1. 1 , 4 , 1 .  

3. 3.  
5 .  1 .  

Section 7 

1 .  8 ,  96, 24, 1 344. 

3. 12 ,  14736;  4, 120144. 

7. 24, 48. 

Section 8 

7. 3 1  
19. All n such that n ';'  0 or 1 (mod p). 

9. There are four: 5040, 7980, 8400, 
and 9360. 

1 1 .  Even k. 

17. 2d(N) . 

3. 12 ,  1 8 ,  and 20 are abundant, 6 is perfect, and the rest are deficient. 

Section 9 

1. 12 ,  96, 960. 

3. 6528, 80088. 
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5_ 0 

08 (mod 1 5) 

15.  5, 8, and 12.  

Section 10 

2 3 4  

6 

5 6 7 8 9 10 1 1  

1 0  6 6 10 

12  1 3  14 

6 

1 .  2 ,  6, 7, and 1 1  have order 12 ;  4 and 10 have order 6; 3 and 9 have order 3 ; 1 2  
has order 2 ;  1 has order 1 .  

3 .  They are 3 ,  10, 1 3 ,  14 ,  and 15 .  

5 .  4, 2 ,  4,  4 ,  2 ,  4 ,  and 2 .  No. 

7 .  6 and 26. 

IS. p - 4. 

Section 1 1  

1 .  All of them. 
3. X ""  22 or 31 (mod 53), x ""  13 or 18 (mod 3 1 ) , x "" 2 or 5 (mod 7), X 2  5 or 

992 (mod 997) . 

5. - 1 ,  - 1 , - 1 ,  1 .  

7 .  x '"  3 or 6 (mod 7), x "" 50 or 1 00 (mod 10 1 ) .  

9. 1 ,  1 .  

17. Yes:  23 , 76, 83 ,  and 1 36 are all solutions .  

19. (rIp) = 1 .  

Section 12 

1.  (3/p)  = 1 if p � 1 or 11 (mod 1 2) and - 1  if p "'" 5 or 7 (mod 12) .  

7 .  (b) Then a and p - 0 are both residues o r  nonresidues .  

9. - 1 .  

Section 13 

1 .  1 0 1 1 1 0l01O� ,  200102 13 , 4226" 2037�, 1 137/ 1 , 

3. 421 , 1 1 07 , 4 159, 5377. 
S. 1 02 ,  I S3 ,  7 .  

7 .  2 3 4 

2 4 6 1 1  
3 6 12 15  
4 1 1  1 5  22 
5 1 3  2 1  26 
6 IS  24 33 

5 6 

1 3  I S  
2 1  24 
26 3 3  
34  42 
42 S I  
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9. 73 , 1 56 , 2 14 , 48848 . 

11 .  19/49, 1/2, 13/16.  

13.  Any b ""  2,  3,  or 4 (mod 5).  
15. Six gifts, one each of $32, $ 128, $512,  $ 1 024 , $32768, and $65536. 
17. (a) COl, DODO, CODA, BODE. 

(b) 3243 , 45232, 57007 , 4 1438. 
(c) Not that I know of. 

19. (a) 296, 1 968. 
(b) ( 1 13 1 10)! . 

Section 14 

1 .  8X67, 1 5€43 1 26.  

3 . .  572497249 . . . , 3/13 . 
5. $4E .€6. 
«: .  The digits in this answers are in the base X .  One do-metric mile is  .98 . 

ordinary miles, one do-metric pint is .93 . . .  ordinary pints, and one do­
metric pound is .98 . . .  ordinary pounds .  

Section 15 

1 .  2 ,  1 ,  4. 

3 .  2, 3 .  

7 .  1116, 1 1 18 ,  and 1124. 

Section 16 

9. 2, 4, 3, 6, 10. 
l l .  6,  1 , 16. 

..,....,..,-"...-:-
13. (a) .0 1234579 

(c) .0 12346. 
(b) .0 1 23457 

1. They have hypotenuses 10 ,  1 5 ,  20, 25 , 26, 30, 34, 35 ,  39, 40, and 45. 

3. ( 100, 2499, 2501 )  and ( 100, 621 , 625). 

9. Yes. 

13. Only (40, 9, 4 1 ) .  

Section 17 

3. No. 

5.  No. 

Section 18 

1.  None is  a sum of two squares. 

7. No. 
9. All even k. 

3. The larger square is 179 ,  178,  173 , 166,  163 ,  1 57 ,  142 , or 13 1 .  

7. Yes .  
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Section 19 

1 . 3 1 = 52 + 22 + 12 + 12 , 37 '" 62 + 12 = 42 + 42 + 22 + P, 4 1  '" 62 + 22 + F = 
52 + 42 = 42 + 42 + 32 , 43 = 52 + 42 + P + P = 5" + 32 + 32 , 47 = 62 + 32 + 
12 + 12 = 52 + 32 + 32 + 22 , 53 = 72 + 22 = 62 + 42 + ] 2 .  

3. 1 482 + 1082 + 1 22 + 42• 
5. 02 + 72 "" 82 + 62 "" 42 + 42 ", - 2  (mod 1 7) .  

Section 20 

1. 3 + 8' 12 , 5 + 2 · 6'/2 , 7 + 2 · 121/2 , 19 + 6 ·  1 0l!2 . 
3. (3, 1) and (17, 6), (5,  2) and (49, 20) , (8 , 1) and ( 127, 16).  
5. The three smallest positive solutions are ( 1 , 1 ) ,  (3 ,  4), and ( 1 1 , 1 5) .  

7 .  (c) There are infinitely many solutions. 

9.  (b) Triangles with sides (3, 4,  5), ( 1 3 ,  14, 1 5) ,  and (5 1 ,  52, 53) are the 
smallest. 

13. XklYk approaches n 1 /2 . 

15. The next solution i s  1 082 + 1092 + I ID2 '" 1 3 32 + 1342 . 

Section 21 

1. (a) 1979. (b) None. 

Section 23: Additional Problems 

Section 1 

1 .  All solutions are x = I + 1 9t ,  y = 1 - 23t ,  t an integer. 
7 .  (n ,  n + 20) = 1 ,  2, 4, 5, 1 0, or 20. 
9. Yes .  

Section 2 

1 .  In its prime-power decomposition each exponent is a mUltiple of k .  

3 .  (a) 60, 2p2q. 

Section 3 

1 .  Four ways. There may be 14, 1 5 ;  1 6, or 17 quarters. 

Section 4 
3 .  (a) 0, 1 , 4,  or 7 .  (b) No. 

7 .  Any n "'" 1 5  (mod 30) satisfies the three congruences. 

Section 5 

1. x '"  534 (mod 2401 ) .  3 .  k =  1 or  2 .  



236 Answers to Selected Odd-Numbered Problems 

Section 7 

3 .  (c) 18 ,  20, and 24 are examples.  
5.  (b) No. 

Section 8 

7. All a � 3 .  

Section 9 

3. All n which are a power of 2 times an integer relatively prime to 3 .  
7. (a) 1 , 1 , 2 ,  1 , 2 , 2, 2 . (b) k - 1 .  (c) k .  (d)j + k  - 1 .  

1 3 .  (a) 0 ,  - 13 , 0, - 15, 0 .  (b) -p o (c) 0 .  (d) _p h' . 

15 .  All such 2k , k < 50, are 14, 26, 34, 38, 50, 62, 68 , 74, 76, 86, 90 , 94 , and 
98 . 

Section 10 
1 .  None. 

3 .  17 .  

5 .  1 9830 1 2 .,. 1 (mod 1024) and 1983 is not a mUltiple of 5 1 2. 

9. k 2 3 4 5 6 7 
indzk (mod 19) ° 13  2 1 6  14  6 

k 1 1  1 2  1 3  14 IS 16 17 
indzk (mod 19) 12 15 5 7 1 1  4 10 

Section 1 1  

1 .  No solutions, x "" ° or 4 (mod 5),  x .., 2 (mod 5) . 
3 . 1 , 2 , 4, 7 , 8 , 9, 10, 14, 16, 18 ,  19, 20, 25, 28. 
5. 3, I I ,  and 17. 

7 .  Yes:  21  or 76. Yes: 16 or 37. 
9. No. 

Section 12 

1 .  No. There are no longer sequences. 
3 .  (c) 2, 3 ,  and 8 .  

Section 13 

8 

3 

18 
9 

1 .  (a) (a , b )  = (2, 1 6) or ( 1 , 33) .  (b) (a , b)  = (6, 17). 

Section 15 

1 .  4>(3 14 15) I- 3 14 14. 

3 .  In any base b such that 2, 3,  and 5 divide b. 

9 

8 

10 

17 

5 .  A computer program may be necessary to find the next example, even 
though it comes before 11 100: 1/77 and 1178 both have period 6. 



Section 17  

7 .  Yes .  
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9. x = (ac)n' , y  = (beY" , x. = c ' ,  where c = a r.' + b r.' and rn2 + 1 = (n - l)s .  

Section 1 8 

9. None. 

Section 19 
1. 2387i + 154' + 66' + 0', among others . 

Section 20 

1 .  Approximately . 09, .002, .00007, and .000002. 

5. 336312378. 

Miscellaneous 

5. Eig,ht 13 ' s, two 9' s, and seventy-eight 3 ' s . 

7. Two scotch , one rum, and four vodka. 

17. 32076. 

19.  5 .  

23 .  533  = 13 · 41 ,  1073 = 29 · 37. 

27. No. 

3 1 .  (a) a = 7 , p  = 17. 

4 1 .  (c , d) = (4, 3)  or ( 1 1 ,  9) . 

49. 1 996, 2024, 2052, and 2080. 

5 1 .  No. 

53 . 2 d (N2) = 1 .  

55.  (a) p - 2 .  (b) p '  - 2p . 

65. x = - 1 - 9m + 8n , y = 1 + 9m - 7n ,  x. = -m is one way of writing the 
solutions. 

73. Yes.  
81 .  For example , 22 + 52  + . . . + 232 + 262 = 482• 

83 . 1 , 2 , 3 , 5 , 7 ,  and 1 1 .  

85. 9 = ( 12/5)2 + (915)2 = (36/13)2 + ( 15/13)' = (24/ 1 7)2 + (45/17)2 = . 

97. (b) Yes: 1 806. (c) No others . 

Appendix A 

1 3 .  No. 



Comments on Selected Odd-Numbered 
Problems 

The outlines of solutions that follow may not be the easiest or the quickest, but 
they will ahnost always work. The hints may not convey �nything, but they 
are almost nc>¥er misleading. 

Section 2 

7. 60466 176 = 6'0 = (65)2 = (61)5.  

1 1 .  (b) 78 :s; (25ab )/32 :S 82 no matter what the digits a and b are , and none of 
78, 79, 80, 8 1 ,  and 82 is a power, except 8 1 .  

13. A counterexample i s :  3 1 60, 5 1 60, and both 3 and 5 are greater than 
60114 = 2 .78 . . . . But 60/3 . 5 = 4 is not prime. The statement would be 
true if p and q were the two smallest prime factors of n .  

15. 2 "  - 1 = 2047 = 23 . 89 i s  composite and 1 1  is not. 

Section 5 

1. 40x "" 777 ... - 1000 (mod 1777), so x "'"  -25 ""  1752 (mod 1777). 

15. 2'5 . 3 '0 . 5". 

19. The condition (m;. mj) 1 (aj - aj) for all i and}. i 1= j, is both necessary and 
sufficient for the system to have a - solution. 

Section 6 

II .  - I ""  (p - I) ! ""  (p - 1 )(p - 2)(p - 3) ! ""  ( - I)(-2)(p - 3)! "" 2(p - 3) ! 
(mod p).  

15.  (b) IP + 2P + - . . + (p - I)"  "'" 1 + 2 + - - . + (p - 1 )  "" p (p - 1)/2 "'" 0 

(mod p),  since (p - 1 )/2 is an integer. 

238 
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17. (a) ap+q - alHI - aq+J + a 2 = (aP - a )(aQ - a) .  

(b) a '''' - a P ;s  aO  - a (mod p) and a PO - a O "'"  a l> - a (mod q),  so both p 
and q divide apq - (I" - a" + a . 

1 9. If n '"  0 (mod p), then 1 + n + n2 + . . . + nP-2 "", 1 (mod p). If n '"  1 (mod 
p) ,  the sum is congruent to p - 1 (mod p) .  If n '" 0 or 1 (mod p),  the sum is 
(n P-J - l)/(n - 1) ,  and p divides the numerator but not the denominator of 
the fraction. Thus p divides the sum. 

Section 7 

15. If dl > da, . . .  , dk are the divisors of n, then 11dJ + 1/d2 + . . .  + lIdk = 
u(n)/n . To prove this, divide both sides of dk + dk- J + . . . + dl = u(n) by n .  

17. If x + y = a and x - y = b ,  then ab = N, and a can have 2 d (N )  different 
values :  the positive divisors of N and their negatives. Since N is odd, so 
are a and b ,  and hence each pair (a , b )  gives a distinct solution ex ,  y). 

19. Uk(P') = 1 + pk + p2k + . . .  + p'l: and Uk (P/'P2" . . . p/') = Uk (PJe' )Uk (Pz" ) 

. . .  Uk (P/') , 
' 

Section 9 

9. The sum of the positive integers less than n and relatively prime to it is 
n cp(n)12 . 

15.  n is of the form 2° with a s 3 ,  2°p with a s 2, or 2apq with a ,.;  1 ,  where 
P and q are odd. Any other form would have cp(n) divisible by an odd prime 
or by 8. 

17. Put m = 2rM and n = 2'N, where M and N are odd and one of r and s is 1 .  
Then (M, N )  = 1 , so 

while 

cf:>(m)cp(n) = 2r-Jcp(M )  2'- Jcp(N) . 

19.  n is divisible by 6, so n = 2a3bN with (2, N )  = (3 ,  N )  = 1 .  Thus 

cf:>(n) = 2°3b- Jcp(N )  s 203 b-'N s n/3. 

Section 1 0  

1 1 .  From Problem 10,  g = hk (mod p)  with k odd, so 

(gh)'P- J )12 "" (h(k+ 1 >I2),P- J ) "" 1 (mod p), 

and gh does not have order p - 1 .  

13. Since a '" 1 (mod p), at + a + 1 lIE 0 (mod p),  whence 

(a + 1)3 .,. a3 + 3a2 + 3 a + 1 ""  3(a2 + a + 1) - 1 

"" - 1  (mod p) .  
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Thus the order of a + 1 is a divisor of 6. It is easy to verify that it is not 1 or 
2.  

15.  We know that a'J "" - 1 , so a3 ... -a and a4 "" 1 (mod pl .  Thus 

(a + 1)4 "" a4 + 4al + 6a1 + 4a + 1 ""  1 - 4a - 6 + 4a + 1 

"" -4 (mod p) .  

17 .  From Problem 14, the primes other than 3 that can divide 219  + 1 are of  the 
form 38k + 1 . Since « 219 + 1)/3)1 I'J < 4 19, the only primes to test are 191  
and 229. 

19. Let x = g k. Then 

or 

J 

gXE x + 1 (mod p) and g1x "'" x + 2 (mod p),  

(g  - l)x "" 1 (mod p) and (g2 - 1)x "'" 2 (mod pl .  

The latter congruence implies 

(g + 1}(g - l)x "" (g + 1)  . 1 ""  2 (mod p), 

which is  i mpossible. 

Section 1 1  
15 .  7 1  (n 2 + 1) implies n " "" - 1  (mod 7 ) ,  but this is impossible because 

(- 117) = - 1 .  

Section 12 
1. If p > 3,  then those integers k such that the least residue (mod p) of 3k is 

greater than (p - 1)/2 are just those k such that (p - 1)/6 < k :5 (p - 1)/3 . 
Consider cases: p = l2n + 1 , 5 ,  7, or 1 1 .  

3. Show that if p = 2· - 1 , where q is an odd prime, then p = 2 . 4{q-] )12 - 1 
"" - 1  (mod 4) so (3/p) = -(p/3) . 

5. (a) Note that q "" 1 (mod 4) always.  
(b) Consider two cases: p "" 1 and p "'" 3 (mod 4) .  

9. (a) (-3/p) = ( - lip )(3/p)  and apply Problem 1 .  
(b) Ifx" + xr + r" "" 0 (mod p), then (x + s)2 "" -3s2 (mod p), where s is the 

unique solution of 2s ... r (mod p) .  

Section 13 

15. Write 10,0000 in the base 2 ( 1 100001 10 10100000), and it is  possible to get 
100000 as a sum of powers of two. 

19. (c) Suppose that an integer has two representations. Then 
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0 =  (d, - e ,) + (d. - e.) · 2 !  + (d3 - eo) ' 3 !  + . . .  

Consider the equation (mod 2!)  to see that d, = e "  then (mod 3 !) to see that 
d2 = e2 , and so on. 

Section 14 

E .  The digits in the following answer are in  base X .  One do-metric mile is 
1 72811760 ordinary miles, one do-metric pint is  16 1611728 ordinary pints, and 
one do-metric pound is 27(62 .5)/1728 ordinary pounds,  using 62.5  as the 
number of pounds of water in a cubic foot and 23 1 cubic inches per gallon. 

Section IS 

13. (d) In base b, 1I(b - 1 )2 = .0 1 2 , . .  (b - 4)(b - 3)(b - 1).  

IS.  Yes.  No. 

Section 16 

IS. If (a - I)" + a2 == (a + 1 )2 ,  then a(a - 4) == O. 

1 7 .  (a) (2n + 1 )2 + (2n(n + 1 » 2 == (211(n + I )  + 1)2 ,  n == 0, 1 ,  . 
(b) If at + hi == (b + 1 )\ then a" == 2h + 1 .  Thus a is odd , say a == 211 + 1 .  

Then h = 2n(n + 1 ) .  

Section 1 7  

3.  If  x "  + y "  == z" ,  then (X2)" + (y")4 == (Z2)4 , and that is  impossible. 

Section 20 

7 .  (c) The equation becomes x + ay = I or - 1 , and either one has infinitely 
many solutions. 

9. (a) The area of a triangle with sides a, b, and c is  

(s (s - a){s - h)(s - C» ' /2 , 

where s == (a + b + c)/2 , so this triangle has area (3a2(a2 - 1 » 1 /2 .  
(b) If 3(a" - 1 )  = bi ,  then 3 b, b == 3 c ,  and a 2 - 3ci == 1 ,  with solutions (2, 1 ) ,  

(7 ,  4) , (26, 1 5) ,  . 

Section 21 

1.  (b) [nI2] + [n/22] + . . . < n/2 + n/2' + . . . == /1 . 

3. p is not a factor in the denominator and i s  a factor in the numerator, once. 

S. n == 7T(P.) :s ap. /ln P. :S ap. lln n, because P. � n . 
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SectiOfl 23: Additional Problems 

Section 2 

5. Suppose that n is composite. Then it has a prime divisor among P I > P.,  
. . .  , Pl.. Call it p .  Then p l (a - b )  and p l (a + b),  so p l 2a and p l 2b , 
which is impossible because (a, b) - 1 .  

Section 4 

3 . (b) The number is congruent to 2 (mod 9) . 

Section 5 

3 .  For those k such that (k, k (k + 1)/2) = 1 ,  and this is not true if k 2: 3.  

Section 6 

1 .  (a) 

(ab)(ab)' iiiii. 1 "" 1 · 1 ,.. (aa ')(bb ') "" (ab)a 'b ' (mod p) ; 

cancel abo  

3 .  This can be found from the theorem of Problem 14, Section 6. 

7. (2p - 1 ) 1 "" p (mod pt) .  

9. 4"" -p cp + I )p (mod p + 2), so 

4«P - IH + 1) � -p ep + I )p«p - 1 ) 1  + 1) 

� -peep + I)p(p - 1) 1 + (p + I )p)  

"" -p «p + 1 ) 1  + 2)  (mod p + 2) .  

Thus 4«p - 1) 1  + 1 )  + p "" -p«p + 1 ) 1  + 1) (mod p + 2) , and this is zero 
if and only if (p + 1 ) 1  + 1 ""  0 (mod p + 2) . That is so if and only ifp + 2 is 
prime. 

Section 8 

5. An integer between a pair of twin primes greater than 5, 1 is a multiple of 
6, and 12,  18 ,  24, 30, . . . are all abundant. 

1 3 .  The divisors of 1 + P are included among 1 , 2 ,  . . .  , p  - 1 ,  p + C and 
the sum of these is (p2 + P + 2)/2 < p' + P + 1 .  

Section 9 

5. This is essentially the same as Problem 19 of Section 9. 

9. Let n = 2"3W with (2, N) = (3, N) = 1 and consider cases. If both k andj 
are positive ,  

2"3h'N = nl3 = cf>(n) = 2"3Hcf>(N), 

whence N = 1 .  If k is zero andj is not, 

n/3 = 3j-W = 2 3Hcf>(N), 

which is impossible since 2tfN. Ifj = 0, then n13 is not an integer. 



1 3 .  

Section 1 0  
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"". ( _ l)n/d (d) = {-11 !f n . is odd 
dL... cp 0 Ifl1 IS even. In 

7 .  If m 2: n, the result follows by multiplying both sides of a "' � a II'-"a " 
(mod p) by a-" .  If /71 < /1 , start with a"  "" a "-II'a'" (mod p) ,  

1 1 .  Let indo {f = 1' . Then gr "'" ([ (mod p) ,  so  a " "'" gr" (mod p) . But  this says 
that indy a" "'" nl' (mod p - 1) ,  which was what was to be shown . 

1 5 .  The first part is Problem 20(a) of Section 1 0  again.  For the second part, 
see Roberts [ 14, p. 294] . 

Section 1 1  

9. If p "" 7 (mod 8), then q = (p - 1 )/2 "", 3 (mod 4), so 

(qlp) = -(plq) = - (lIq) = - 1 . 

Section 12  
1 .  One of  p ,  4p + 1 ,  and 1 6p + 5 ,  i s  divisible by 3 for all p .  

3 .  (a) The proposed equation i s  impossible (mod 3 ) .  
(b) 

/712 = /12 + (/1 + 1 )2 + . . . + (/1 + k)2 
= (k + 1 )/12 + k(k + 1)/1 + ( P  + 22 + . . . + k2) 
"" J2 + 22 + . . . + k2 (mod k + 1 ) .  

5 .  /17:''' '''' /1)/- 1 "", 1 (mod p), and 

- 1  = (nip)"" /1'JI- l l/2 "", /1'l!"-' (mod p),  

so /1 has order 2"' (mod p) . 

Section 1 3  

1 .  (c) a( 1  + b· + b 2) = b(l  + c) implies bla .  But O < a < b . 

5 .  1 = - }  + 1 . 2 = - 1  + ( - 1 )  . 2 + 1 . 4 = . 

Section 14 

5 .  It  is  like the test in Additional Problem 10 ,  Section 4 .  

Section 1 6  
1 .  I f  n + (n + 1 )  = m 2 ,  then n 2 + m 2 = (n + 1)' .  

3 .  If n = t (t  - 1 )/2 and m = t (t  + 1)/2, then m 2 - /1 2  = t 3. 

5 .  If mn(m'  - /12) = k(2mn + (/11' - n ') + (/112 + /12» , then 2k = l1(m - 11) .  
If 2k + ab,  then m = a + b and 11 = a .  

Section 17  
5 .  If p J xyz , then Xl'-l ... yP-I ... ZP- I "'" 1 (mod p) .  

7.  Yes, because (/1 2 ,  n + 1 )  = 1 .  
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Section 18  
3 . . Suppose that 4'(8k + 7) = x'  + y2 + Z2 . Apply Problt"m 1 e times to get 

8k + 7 = Xl2 + YI' + ZI" Then apply Problem 2. 

5 .  If n - 2 (mod 4), then n = x 2  - y' is impossible. 

7. If n = x (r + l)12 + y (y + l)/2 , then 4n + l = (r + y + l)2 + (r - y)' . 

9. None-all are congruent to 3 (mod 4). 

Section 19 
1 .  5725841 = 1 12 . 4732 1 ,  so it i s  necessary only to write 47321  as a sum of 

four squares .  
5 .  If  k l ,  k" . . .  , kr  are odd, then kl2 + kit  + . . . + k,2 ... r (mod 8). 

Section 20 

1. The approximations are 3/2, 17112 ,  99nO, and 577/408 . 
3. Thi s  follows from Lemma 2. 

Miscellaneous Problems 
9. The first numbers on the left-hand sides are every other triangular 

number. The result may be written 

(2n! + n )2 + . . .  + (2n' + 2n)' = (2n2 + 2n + 1)2 + . " + (2n' + 3n)2 .  

1 3 .  fen) = ( 3  + ( - l)n+ l)/4 is  one . f(n) = (n + 1 - 2 [nI2})/2 i s  another. 

19. Now Then 

Ann's  age a 3 m12 
Mary' s  age m 5 a  

3ml2 - a = 5a - m ,  s o  5m = 12a . 

27. x2 + (x + 1)2 = (r (x + 1 )  + 1)2 - (, (x + 1))2 .  
29. No: Xl + (1 - x) = x + (l - X)2 for aU x. 
3 1 .  (b) 2a '" a3 E 3, 3a "" 0 4 "" 4 (mod p) imply 0 '"' 1 (mod p), which im­

plies p = 1 .  

33 .  (a) If m i s  composite, then one of p = 2 ,  3 ,  5 ,  7 divides m. But then 
p i  (2IOn + m) too. 

35. Note that there is no loss of generality in assuming that (0 , b )  = 1 .  
Complete the square on the right-hand side t o  get 

(r + (a + b » 2 = 2(a2 + b2 + ab ) ,  

and that i s  impossible (mod 4) . 

39. All are congruent to 1 (mod 3) . If oot, two of the integers would be 
divisible by 3 .  

4 1 .  c 2 + 5 = c d  + 3d,  s o  d = c - 3 - 14/(c + 3) , whence c = 4 or 1 1 .  
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43 . Any divisor is 2rq <  where ,. s p - 1 ,  s = 0 or I ,  and q = 2 J> - I . 
47. Interchange 49 and 94. 

49. There are 3 . 365 + 366 = 1461 days between one leap year February 1 
and the next . 1461 "" 5 (mod 7) . Remember that 2000 will be a leap year. 

5 1 .  (a) If n is composite, 10" - 1 is composite . 
(b) 1 1 1  = 3 . 37. 

53.  Put x = N + a and y = N + b. Then ab = N� . There are deNt) positive 
values of a that satisfy this and d (Nt) negative values, one of which is 
-N. 

55.  (c) Let l/1(n) be the number of elements in. the sequence 1 . 2 , 2 '  3, . . .  , 
n (n + I )  which are relatively prime to n .  If n = p " , p an odd prime, 
then l/1(n) = p "- 1 ( p  - 2) . 1/1 is multiplicative ;  thus t/J(n) can be found 
for: any positive integer n .  

59. For example, 19  = 16  + 2 + 1 and 19 appears i n  lists 16, 2 ,  and 1 .  

6 1 .  The harmonic mean of the divisors of n is 

( 1 1 )- ' 
d(n) � d ' 

which is nd (n)IO'(n) .  If n = 2 1,- 1 (21' - I) ,  O'(n) = 2n , d (n)  = 2p , and the 
harmonic mean is p .  

63 . 2r� + 3 ""  3 o r  5 (mod 8) , which i s  impossible. 
69 . 9'0 "" 1 (mod 100). 

7 1 .  3 1  (2'" + 1).  

73 . Yes:  2U-'(22k- 1 - 1)  = P + 33 + . . .  + (2 k - 1 )3 i s  true for all k ,  as may 
be shown using the fact that 

P + 23 + . . . + n J = (n (n + 1 )/2)1 . 

75 . If n = 2,,- 1q ,  where q = 2P - 1 is prime , then the divisors of n are 

1 , 2 ,  . . .  , 2"- 1 ,  q ,  2 q ,  . . .  , 2 ,,- 1q , 

and their product is n" .  

77 .  For each 5 that appears as a factor of n t , there are at  least two even 
factors. 

79. (a) 
n 2 3 4 5 6 7 8 9 1 0  1 1  12  13  1 4  1 5  

fen)  2 3 4 5 3 7 6 6 5 1 1  4 1 3  7 5 

n 16 17 18 19  20 

fen)  8 1 7  6 19 5. 

83 . If p > 12 ,  then p - 9 is even and composite. 

85. If 9 = (alc)2 + (blc)2, then a2  + b2 = 9c2 . Hence a1 + b2 ... 0 (mod 9) , and 



246 Comments on Selected Odd-Numbered Problems 

this implies that a = 3 r ,  b = 3 s .  Thus r' + S2 = c:!, and this has infinitely 
many solutions.  

91.  For n 2: 2 ,  x = y is impossible, so we may assume that x > y.  Then 

ex + 1 ) "  > x "  + nx "-I > x " + y " > z " > x " ,  

so x + 1 > z > x ,  which i s  impossible. 

93 . Iff(rls ) = 0,  then r la "  and s lao .  Hence r and s are odd. But this implies 
that 0 = s "f(rls) is the sum of some even integers and an odd number of 
odd integers, which is impossible. 

95. Induction, using the identity 

23k . .  + 1 = (23k + I)(p 3k - 23k + 1 ) ,  

is  one method that will work. 

97 . (a) Let m = P,P, . . .  Pk with P I  < p, < . . . < Pk' Then p, lm implies 
(p, - l)m ,  so P2 - 1 = P I '  Thus P I  = 2 and P2 = 3 . Further, Pl l m  
implies (p, - 1)  1 m ,  so (p, - 1 )  I P IP2 ,  whence P o  = 7 .  Similarly, 
(P4 - 1) 1 42, so P. = 43 . Finally, (Po - \) 1 2 ·  3 . 7 ·  43 , but there is no 
such prime. 

(b) m = 2 · 3 ' 7 · 43 = 1 806 has the desired property . 
(c) But there are no others. 

99. Apply Fermat' s  Theorem: there is  a progression starting at any term with 
ratio 2/) - 1 .  

Appendix A 

3 . 13 + 3' + . "  + (2k - 1 )3 = k:!(2k:! - I ) .  

5 . t .  = n (n + 1)/2 . 

9. (n - I)n (n + l)(n + 2) = (n:! + n - If - 1 .  

1 3 .  8 t. + 1 = (2n + 1)1 .  

15 .  f511+5 = f./l + 5f'.- 1 + 10f.,,-2 + 1Of,;II-:I + 5f511-4 + f511-5' 
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