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Preface

Mathematics exists mainly to give us power and control over the phys-
ical world, but it has always been so fascinating that it was studied for
its own sake. Number theory is that sort of mathematics: it is of no use
in building bridges, and civilization would carry on much as usual if
all of its theorems were to disappear, nevertheless it has been studied
and valued since the time of Pythagoras. That greatest of mathe-
maticians Carl Friedrich Gauss called it ‘“The Queen of Mathematics,’”
and “‘Everybody’s Mathematics’’ is what the contemporary mathe-
matician Ivan Niven calls it. The reason for its appeal is that the subject
matter—numbers—is part of everyone’s experience, and the things
that can be found out about them are interesting, curious, or surprising,
and the ways they are found can be delightful: clean lines of logic, with
sustained tension and satisfying resolutions.

A course in number theory can do several things for a student. It can
acquaint him or her with ideas no student of mathematics should be
ignorant of. More important, it is an example of the mathematical style
of thinking—problem, deduction, solution—in a system where the
problems are not unnatural or artificial. Most important, it can help to
diminish the feeling that many students have, consciously or not, that
mathematics is a collection of formulas and that to solve a problem you
need only find the appropriate formula.

vii



viii Preface

This text has been designed for a one-semester or one-quarter course
in number theory, with minimal prerequisites. The reader is not re-
quired to know any mathematics except elementary algebra and the
properties of the real numbers. Nevertheless, the average student does
not find number theory easy because it involves understanding new
ideas and the proofs of theorems. I have tried to make the proofs
detailed enough to be clear, and I have included numerical examples,
not only to illustrate the ideas, but to show the fascination of playing
with numbers, which is how many of the ideas originated.

I have included an introduction to most of the topics of elementary
number theory. In Sections 1 through 5 the fundamental properties of
the integers and congruences are developed, and in Section 6 proofs
of Fermat’s and Wilson’s theorems are given. The number theoretic
functions d, o, and ¢ are introduced in Sections 7 to 9. Sections 10 to
12 culminate in the quadratic reciprocity theorem. There follow three
more or less independent blocks of material: the representation of
numbers (Sections 13 to 15), diophantine equations (16 to 20), and
primes (21 and 22). Because 1 think that problems are especially im-
portant and interesting in number theory, Section 23 consists of 260
additional problems, some classified by section and some arranged
without regard to topic. '

There are three appendixes. Appendix A, Proof by Induction, should
be read when and if necessary. Because computers integrate naturally
with number theory, Appendix B presents problems for which a com-
puter can be programmed. Appendix C contains a table that makes it
easy to factor any positive integer less than 10,000.

Because I believe that the best way to learn mathematics is to try to
solve problems, the text includes almost a thousand exercises and
problems. I attribute the success of the first edition not to the
exposition—after all, the proofs were already known—but to the prob-
lems, and the problem lists have been revised, deleting unsuccessful
problems and including new ones that may be more successful. The
exercises interrupt the text and can be used in several ways: the stu-
dent may do them as he reads the material for the first time; he may
return to them later to check on his understanding of material already
studied; or the instructor may include them in his exposition. Some of
the exercises and problems are computational and some classical, but
many are more or less original, and a few, I think, are startling.
Number theory problems can be difficult because inspiration is some-
times necessary to find a solution, and inspiration cannot be had to
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order. A student should not expect to be able to conquer all of the
problems and should not feel discouraged if some are baffling. There is
benefit in trying to solve proolems whether a solution is found or not.
I. A. Bamnett has written [1] **To discover mathematical talent, there is
no better course in elementary mathematics than number theory. Any
student who can work the exercises in a modem text in number theory
should be encouraged to pursue a mathematical career.””

Answers are provided where appropriate for exercises and odd-
numbered problems—those marked with an asterisk. Comments are
given for those problems marked with a dagger. Although there are
more problems than a student could solve in one semester, they should
be treated as part of the text, to be read even if not solved. Some-
times they may be more interesting than the material on which they
are based.

The first edition contained many errors, and I want to thank the
many people who pointed them out and suggested improvements.
These errors have all been removed, but inevitably new ones have been
added. I hope that when the reader finds one, he will feel pleased with
his acuteness rather than annoyed with the author. Corrections will be
welcomed.

Underwood Dudley
May 1978
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Section

Integers

The subject matter of number theory is numbers, and a large part of
number theory is devoted to studying the properties of the integers—
that is, the numbers . . ., -2, —-1,0,1,2,. . . . Usually the integers
are used merely to convey information (3 apples, $32, 17x? + 9), with
no consideration of their properties. When counting apples, dollars, or
x?’s, it is immaterial how many divisors 3 has, whether 32 is prime or
not, or that 17 can be written as the sum of the squares of two integers.
But the integers are so basic a part of mathematics that they have been
thought worthy of study for their own sake. The same situation arises
elsewhere: the number theorist is coinparable to the linguist, who
studies words and their properties, independent of their meaning.

There are many replies to the question, ‘“Why study numbers?’’
Here are some that have been given:

Because teacher says you must.

Because you won’t graduate if you don’t.

‘Because you have to take something.

Because it gives your mind valuable training in thinking logically.
Because numbers might be interesting.

Because numbers are a fundamental part of man’s mental universe
and hence worth looking into.
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Because some of the most powerful human minds that ever existed
were concerned with numbers, and what powerful minds study is
worth studying.

Because you want to know all about numbers: what makes them
work, and what they do.

Because mathematics contains some beautiful things, and someone
told you that number theory contained some of the most beautiful—
and few of the most ugly—things.

Because it is fun.

Let us begin.

In this section, and until further notice, lower case italic letters will
invariably denote integers. We will take as known and use freely the
usual properties of addition, subtraction, multiplication, division, and
order for the integers. We also use in this section an important property
of the integers—a property that you may not be consciously aware of
because it is not stated explicitly as the others. It is the least-integer
principle: a nonempty set of integers that is bounded below contains a
smallest element. There is the corresponding greatest-integer principle:
a nonempty set of integers that is bounded above contains a largest
element.

We will say that a divides b (written a |b) if and only if there is an
integer d such that ad = b. For example, 2|6, 12|60, 17|17, —5| 50, and
8] —24. If a does not divide b, we will write a j’b. For example, 4]2 and
3/4.

Exercise 1.7 Which integers divide zero?
Exercise 2. Show that if a|b and b|c, then a|c.
As a sample of the sort of properties that division has, we prove

Lemma I. If d|a and d|b, thend|(a + b).

Proof. From the definition, we know that there are integers q and r
such that

dg=a and dr=5b.

T Answers to selected exercises, those preceded by an asterisk (¥), are provided on
pp. 226ff.
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Thus
a+b=d(g+r),
so from the definition again, d|(a + b).

In the same way, we can prove

Lemma 2. Ifdlal,dlag, ... ,d|an, thendl(cla1 +Coly + - -+ Caay)
for any integers ¢y, C2, . . ., Cy.
Proof. From the definition, there are integers q,, g5, - . - , g, such that
a, =dq,,a;, =dq,, . . . ,a,=dq,. Thus

€@y +Ceaz + - ¢+ +Cpan =d(C1Gy +C2G2 + - 1+ Cagn),
and from the definition again, d]c,a] +cCas + -+ Cuayn.

Exercise 3. Prove that if dla then d |ca for any integer c.

As an application of Lemma 2, let us see if it is possible to have 100
coins, made up of ¢ pennies, d dimes, and g quarters, be worth exactly
$5.00. If it is possible, then

c+d+q =100
and
¢ +10d + 25g = 500.

Subtract the first equation from the second and we get 9d + 24q = 400.
Since 3|9 and 3|24, Lemma 2 says that 3|9d + 24q. That is, 3|400. But
that is impossible, so having exactly $5.00 is impossible with 100 pen-
nies, dimes, and quarters. There are, however, five different ways of
getting $4.99, and later we will develop a method for finding them.
Fractions are not as natural as integers, and there seems to be a
human tendency to avoid them. For example, we divide a gallon into
quarts, a quart into pints, and a pint into ounces so that we can always
measure with integer multiples of some unit. Finding a unit common to
different measures was a problem which would arise naturally in
commerce—if 15 Athenian drachmas are worth 18 drachmas from
Miletus, how many Athenian drachmas are equivalent to 60 Miletian
drachmas? That is one reason why the Euclidean Algorithm for finding
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greatest common divisors was part of Euclid’s Elements, written
around 300 Bc. The rest of this section will be devoted to the greatest
common divisor and its properties, which we will use constantly later.
We say that d is the greatest common divisor of a and b (writtend = (q,

b)) if and only if
(i) d|a and d|b, and

(i) if c|a and c|b, then c = d.

Condition (i) says that d is a common divisor of a and b, and (ii) says
that it is the greatest such divisor. For example, (2, 6) = 2 and (3,
4) = 1. Note that if a and b are not both zero, then the set of common
divisors of a and b is a set of integers that is bounded above by the
largest of a, b, —a, and —b. Hence, from the greatest-integer principle
for the integers, the set has a largest element, so the greatest common
divisor of a and b exists and is unique. Note that (0, 0) is not defined,
and that if (a, b) is defined, then it is positive. In fact, (a, b) =1
because 1|a and 1|b for all a and b.

Exercise 4. What are (4, 14), (5. 15), and (6, 16)?

Exercise 5. What is (n, 1), where # is any positive integer? What is (n,
0)?

Exercise 6. If d is a positive integer, what is (d, nd)?

As an exercise in applying the definition of greatest common divisor,
we will prove the following theorem, which we will use often later:

Theorem 1. If (a, b) =d, then (a/d, bld) = 1.

Proof. Suppose thatc = (a/d, b/d). We want to show thatc = 1. We will
do this by showing thatc =< 1 and ¢ = 1. The latter inequality follows
from the fact that c is the greatest common divisor of two integers, and
as we have noted, every greatest common divisor is greater than or
equal to 1. To show thatc = 1, we use the facts that ¢ | (a/d)andc l(b/d).
We then know that there are integers ¢ and r such that cq = a/d and
cr = bld. That is,

(cd)g =a and (cdyr =»b.

These equations show that cd is a common divisor of a and 4. It is thus
no greater than the greatest common divisor of a and b, and this is d.
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Thus cd = d. Since d is positive, this givesc = 1. Hencec = 1, as was
to be proved.
If (@, b) = 1, then we will say that a and b are relatively prime, for a
reason that will become clear in the section on unique factorization.
When a and b are small, it is often possible to see what (a, b) is by
inspection. When a and b are large, this is no longer possible. The
Euclidean Algorithm makes it easy, but first we need.

Theorem 2. The Division Algorithm. Given positive integers a and b,
b # 0, .there exist unique integers g and r, with 0 < r <b such that

a=bg +r.

Proof. Consider the set of integers {a,a —b,a —2b,a —3b,. . . }. It
contains a subset of nonnegative integers which is nonempty (becausea
is positive) and bounded below (by 0); from the least-integer principle,
it contains a smallest element. Let it be a —gb. This number is not
negative and it is less than b, because if it were greater than b it would
not be the smallest nonnegative element in the set: a — (g + 1)» would
be.

1 I 1 I 11 I
1 1

i1
T
a—(g+ b 0a-—gb a—2 a-b a

Let r =a — bq: this construction gives us g and r, and it remains to
show that they are unique. Suppose that we have found g, r and g4, r,
such that

a=bg+r=bqg,
with 0 = r <b and 0 = r, <b. Subtracting, we have
1 O:b(q_Q1)+(r_"1)-

Since b divides the left-hand side of this equation and the first term on
the right-hand side, it divides the other term:

bl(r—rl).
But since 0 <r <b and 0 = r, <b, we have
-b<r—-ri1<b.

The only multiple of b between —b and b is zero. Hence r — r; = 0, and
it follows from (1) thatg — g, = 0 too. Hence the numbers g and r in the
theorem are unique.
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Although the theorem was stated only for positive integers a and b,
because it is most often applied for positive integers, nowhere in the
proof did we need a to be positive.
theorem is true if 0 = r <b is replaced with 0 = r < —b;
vited to reread the proof and verify that this is so.

Exercise 7. What areq andrifa = 75and b = 24?7 Ifa = 75 and b = 25?

Theorem 2, combined with the next lemma, will give the Euclidean
Algorithm.

Lemma 3. If a = bg +r, then (a, b) = (b, r).

Proof. Letd = (a, b). We know that since d|a and d|b, it follows from
a = bqg + r thatd Ir. Thus d is a common divisor of b and r. Suppose that
¢ is any common divisor of b and r. We know that ¢ Ib and ¢ Ir, and it
follows froma = bq +r thatc|a. Thus ¢ is acommon divisor of a and b,
and hence ¢ = d. Both parts of the definition of greatest common di-
visor are satisfied, and we have d = (b,

Exercise 8. Verify that the lemma is true whena = 16,b = 6, andg = 2.

Let us apply Lemma 3 to find the greatest common divisor of 69 and
21.
get (21, 7) = 7. The ancient Greeks would have found the greatest
common measure of these two lengths

! |
a 1] t

b
by laying the shorter against the longer as many times as possible

b b b r

1 ) 1 ]
T 1 1 T 1

p

b
until, as in this case, a common measure is found. The formal state-
ment of the process just carried out for a special case is
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Theorem 3. The Euclidean Algorithm. 1f a and b are positive integers,
b # 0, and

a=bqg+r, 0=r<b,
b=rq, +ry, O0=r<n
r=r1q2+]'2, OSI‘2<I‘1,

Fi = Fres19p+2 +"k+2, 0= Frte <rk+1>

then for k4 large enough, say &k =, we have

Fr—1 = PGy

and (a, b) =r,.

Proof. The sequence of nonnegative integers
b>r>ri>rp>- - -

must come to an end. Eventually, one of the remainders will be zero.
Suppose that it is r;,;. Then r,_, =r;q,4,. From Lemma 3 applied over
and over,

@b =)= r) =)= =) =1

If either a or b is negative, we can use the fact that (a, b) = (—a,
b) =(a, —b) = (—a, —b).

* Exercise 9. Calculate (343, 280) and (578, 442).

The computation of (343, 280) = 7:

2) 343 =1 - 280 + 63

(3) 280 =4 - 63 + 28

4) 63=2-28+7
28=4-7

can be worked backward. From (4), 7 = 63 — 2-28. Substitute for 28

“from (3): 7= 63— 2(280 —4-63) =9-63 — 2-280. Substitute for 63
from (2): 7= 9(343 — 280) —2-280 = 9-343 — 11-280. We have found x
and y such that 343x + 280y = 7, namely x = 9and y = —11. What was
done in this example can be done in general:
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Theorem 4. If (a, b) =d, then there are integers x and y such that
ax + by =d.

Proof. Work the Euclidean Algorithm backward. The details are
omitted.

We will find a better method for solving ax + by = (a, b) later, so the
computational process in Theorem 4 is not important. What is impor-
tant is the existence of x and y and not their values. To illustrate the
usefulness of Theorem 4, here are three corollaries.

Corollary 1. 1fd|ab and (d, a) = 1, then d|b.

Proof. Since d and a are relatively prime, we know from Theorem 4
that there are integers x and y such that

dx +ay = 1.
Multiplying this by b, we have
d(bx) + (ab)y = b.

The term d(bx) can of course be divided by d, and so can (ab)y, since d
divides ab. Thus d divides the left-hand side of the last equation and
hence divides the right-hand side too, which is what we wanted to
prove. Note that if  and a are not relatively prime in Corollary 1, then
the conclusion is false. For example, 6| 8-9, but 6]8 and 619.

Corollary 2. Let (a, b) =d, and suppose that ¢ |a and c\b. Then ¢ \d.

Proof. We know that there are integers x and y such that
ax + by =d.

Since ¢ divides each term on the left-hand side of this equation, ¢
divides the right-hand side too.

This corollary thus says that every common divisor of a pair of integers
is a divisor of their greatest common divisor.
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Corollary 3. Hfa|m, b|m, and (a, b) = 1, then ab|m.

- Proof. There is an integer g such that m = bg, and since a [m we have
a \bq. But (a, ) =1, so Corollary 1 says that a ]q. Hence there is an
integer » such that g =ar, and thus m = bg = bar. That shows that

_ ab|m.

Problems*

1. Calculate (314, 159) and (4144, 7696).
2. Calculate (3141, 1592) and (10001, 100083).
3. Find x and y such that 314x + 159y = 1.
4. Find x and y such that 4144x + 7696y = 592.
. 5. If N=abc + 1, prove that (N, a) = (N, b) = (N, ¢) = 1.
6. Find two different solutions of 299x + 247y = 13.
7. Prove that if a|b and b|a, thena = b ora = ~b.
8. Prove that if a|b and @ > 0, then (a, b) = a.
9. Prove that ((a, b), b) = (a, b).

10. (a) Prove that (n, n + 1) = 1foralln > 0.
(b) If n > 0, what can (n, n + 2) be?

11. (a) Prove that (k, » + k) = 1 if and only if (k, n) = 1.
_ (b) Is it true that (k, n + k) =d if and only if ¢k, n) = d?

12. Prove: If a|b and c|d, then ac |bd.
13. Prove: If d|a and d|b, then d*|ab.
- 14. Prove: If c|ab and (c, a) = d, then c|db.

— 15. (a) If x* + ax + b = 0 has an integer root, show that it divides b.
(b) If x* + ax + b = 0 has a rational root, show that it is in fact an integer.

4

* Answers to selected odd-numbered problems, those preceded by an asterisk (*), are
provided on pp. 231ff. Comments on selected odd-numbered problems, those preceded
by a dagger (1), are given on pp. 238ff.
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Unique Factorization

The aim of this section is to introduce the prime numbers, which are
one of the main objects of study in number theory, and to prove the
unique factorization theorem for positive integers, which is essential in
what comes later. In this section, lower-case italic letters invariably
denote positive integers.

A prime is an integer that is greater than 1 and has no positive
divisors other than 1 and itself. An integer that is greater than 1 but is
not prime is called compeosite. Thus 2, 3, 5, and 7 are prime, and 4, 6, 8,
and 9 are composite. There are also large primes:

170,141,183,460,469,231,731,687,303,715,884,105,727

is one, and it is clear that there are arbitrarily large composite numbers.
Note that we call 1 neither prime nor composite. Although it has no
positive divisors other than 1 and itself, including it among the primes
would make the statement of some theorems inconvenient, in particular
the unique factorization theorem. We will call 1 a unit. Thus the set of
positive integers can be divided into three classes: the primes, the
composites, and a unit.

* Exercise 1. How many even primes are there? How many whose last
digit is 57

10
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Our aim is to show that each positive integer can be written as a
product of primes—and, moreover, in only one way. We will not count
products that differ only in the order of their factors as different factori-
zations. Thus we will consider each of

22-3-7, 2:3:7-2, 7-3-2-2

to be the same factorization of 84. The primes can thus be used to
build, by multiplication, the entire system of positive integers. The first
two lemmas that follow will show that every positive integer can be
written as a product of primes. Later we will prove the uniqueness of
the representation.

Lemma 1. Every integer n, n > 1, is divisible by a prime.

Proof. Consider the set of divisors of n» which are greater than 1 and
less than n. It is either empty or nonempty. If it is empty, then n is
prime by definition, and thus has a prime divisor, namely itself. If it is
nonempty, then the least-integer principle says that it has a smallest
element, call it d. If 4 had a divisor greater than 1 and less than d, then
so would n, but this is impossible because d was the smallest such
divisor. Thus d is prime, and » has a prime divisor, namely d. .

Lemma 1 can also be proved using the second principle of induction
(see Appendix A). The lemma is true by inspection for n = 2. Suppose
it is true for n = k. Then either k + 1 is prime, in which case we are
done, or it is divisible by some number k, with k; < k. But from the
induction assumption, k; is divisible by a prime, and this prime also
divides k + 1. Again, we are done.

With the aid of Lemma 1, we can prove that every positive integer
can be written as a product of primes in at least one way.

Lemma2. Everyintegern, n > 1, can be written as a product of primes.

Proof. From Lemma 1, we knowthat there is a prime p, such thatp, \rz.
Thatis, n = p,n,, where 1 = n, <n.Ifn, = 1, then we are done: n = p,
is an expression of n as a product of primes. If n; > 1, then from
Lemma 1 again, there is a prime that divides n,. That is, n; = pon,,
where p, is a prime and 1 =< n, <n,. If n, = 1, again we are done:
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n = pp, is written as a product of primes. But if n, > 1, then Lemma 1
once again says that n, = psng, with p; a prime and 1 = n3 <n,. If
ns = 1, we are done. If not we continue. We will sooner or later come to
one of the n; equal to 1, because n >n,>n, > - - - and each n; is
positive; such a sequence cannot continue forever. For some k, we will
haven, = 1, inwhichcasen = p,ps * - - p; is the desired expression of n
as a product of primes. Note that the same prime may occur several
times in the product.

Exercise 2 (optional). Construct a proof of Lemma 2 using induction.
Exercise 3. Write prime decompositions for 72 and 480.

Before we show that each positive integer has only one prime de-
composition, we will prove an old and elegant theorem:

Theorem 1 (Euclid). There are infinitely many primes.

Proof. Suppose not. Then there are only finitely many primes. Denote
them by p,, ps, . . ., p,. Consider the integer

@ n=pps- - pr+1

From Lemma 1, we see that # is divisible by a brime, and since there
are only finitely many primes, it must be one of p,, p,, . . . , D,
Suppose that it is p,. Then since

peln and  pilpips - p,

it divides two of the terms in (1). Consequently it divides the other term
in (1); thus pkl 1. This is nonsense: no primes divide 1 because all are
greater than 1. This contradiction shows that we started with an incor-
rect assumption. Since there cannot be only finitely many primes, there
are infinitely many.

The table on page 13 shows how adding 1 top,p, - - - p, will always
give a prime different from p,, p2, . . ., p,.

Theorem 1 is strong. We can actually identify only finitely many
primes—the largest prime currently known is 299" — 1, and we by no
means know all of the primes smaller than this one. (A list of all the
primes smaller than 10,000,000 fills a large book.) The prime 219937 — ]
is a very large number: it has more than 6000 digits. Although 219937 — ]
is a large number, there are infinitely many integers larger than it, and
only finitely many smaller. Thus, although we can name only finitely
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r Dr pip2 - - - pr+ 1 Prime Divisors
1 2 3 3

2 3 7 7

3 5 31 31

4 7 211 211

5 11 2311 2311

6 13 30031 59, 509

7 17 510511 19, 97, 277
8 19 9699691 347, 27953

many primes, we may be sure that no matter how many we discover,
there is always one more that we have yet to find. Before the develop-
ment of computers, the largest prime known was the comparatively
puny 39-digit number displayed at the beginning of this section. Hence
if you set out to find a prime larger than 2!%%37 — 1 without the aid of a
machine, you will need a great deal of time to spare—several centuries
at the least.

We will show how to construct a table of prime numbers before
proving the unique factorization theorem.

Lemma 3. If n is composite, then it has a divisor d such that
1<d = n'2,

Proof. Since n is composite, there are integers d, and d, such that
did,=nand1<d, <n, 1<d,<n.Ifd, and d, are both larger thann!/?,
then

n=dd, >n'"?n? =pn,
which is impossible. Thus, one of d; and d, must be less than or equal to

n1/2.

Lemma 4. If n is composite, then it has a prime divisor less than or
equal to nt2,

Proof. We know from Lemma 3 that n has a divisor—call it d—such
that 1 <d = n'2. From Lemma 1, we know that d has a prime divisor
p. Since p = d = n'?, the lemma is proved.

Lemma 4 provides the basis for the following method for finding
primes, the well-known Sieve of Eratosthenes, named . after the
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Alexandrian mathematician who lived in the third century BC who is
also remembered for being the first to estimate the circumference of the
earth using geometry. That was a golden century for mathematics:
besides Eratosthenes, there was Archimedes, who had one of the most
powerful mathematical minds ever, and Euclid, who wrote his
geometry book so well that it was used as a textbook for the next two
thousand years.

The idea behind the sieve is simple: the primes are the numbers left
when all the composites are gone. Then, to find primes remove multi-
ples of 2, of 3, of 5, . . . ; if we stop after removing multiples of N, the
numbers remaining between 2 and N? are precisely the primes less than
N2, To see this, note that any number remaining is prime, because if it
were composite it would have, according to Lemma 4, a prime divisor
less than or equal to N, and all the multiples of such primes have been
removed.

For example, let us list the integers up to 121 with the multiples of 2
already removed:

2 3 5 7 9 11 13 15 17 19 21 23 25
27 29 31 33 35 37 39 41 43 45 47 49 51
53 55 57 59 61 63 65 67 69 71 73 15 77
79 81 8 8 87 8 91 93 95 97 99 101 103

105 407 109 111 113 115 117 119 121

Now remove all the multiples of 3—every third number after 3:

2 3 5 7 11 13 17 19 23 25 29 31 35
37 41 43 47 49 53 55 59 61 65 67 71 T3

77 79 83 85 8 91 95 97 101 103 107 109 113
115 119 121

Now remove the multiples of 5, which fall in a pattern: every seventh,
third, seventh, third, . . . number; a stencil could be made to pick
them out, and such stencils have been made in the past:

2 3 5 7 11 13 17 19 23 29 31 37 41
43 47 49 53 59 61 67 71 73 77 79 83 89
91 97 101 103 107 109 113 119 121

After 49, the pattern is to have a multiple of 7 every seventh, fourth,
seventh, fourth, . . . number; removing them and the multiples of 11,
we have
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2 3 5 7 11 13 17 19 23 29 31 37 41
43 47 53 59 61 67 71 73 79 83 89 97 101
103 107 109 113

and these are all the primes less than 121. If there were a composite
number in the list, from Lemma 4 it would have a prime divisor less
than or equal to 11, and we have removed all of the composite numbers
with divisors 2, 3,5, 7, and 11. To find all of the primes less than 10,000,
we would only have to cross out the multiples of the 25 primes less than
100.

Today, any sieving that is necessary is done by computer, but in the
nineteenth century, before there were computers, an Austrian as-
tronomer named Kulik constructed an enormous sieve of all the inte-
gers up to 100,000,000. It took him 20 years, off and on. All that work
was so little valued that the library to which he left his manuscript lost
the part that included the integers from 12,642,600 to 22,852,800. The
simple sieve idea is quite powerful, and refinements of it—the Selberg
Sieve, and the new Large Sieve of Linnik—are producing new results.

The following lemma, proved in Euclid’s Elements, gives the result
that makes unique factorization possible. For the rest of this section,
and until further notice, the letters p and g will be reserved for primes.

Lemma 5. fp|ab, thenp|a orp|b.

Proof. Since p is prime, its only positive divisors are 1 and p. Thus (p,
a) =p or (p, a) = 1. In the first case, p|a, and we are done. In the
second case, Corollary 1 of Section 1 tells us thatp |b, and again we are
done.

The next lemma illustrates a common technique: extending a result
from 2 to any number using mathematical induction.

Lemma 6. 1fp|a,a, . . . ax, thenp|a, for somei, i=1,2,. .., k.

Proof. Lemma 61istrueby inspectionifk = 1, and Lemma 5 shows that
it is true if k = 2. We will proceed by induction. Suppose that Lemma 6
is true for k =r. Suppose that p|aa, . . . a41. Then p|(asa, - - -
a,)a.+;, and Lemma 5 lets us conclude that p |a1a2 . ..a,0rp ‘arﬁ. In
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the first case, the induction assumption tells us that p |a; for some i,
i=1,2 .. .,r.In the second case, p |ai fori =r + 1. In either case,
pla; for some i, i=1,2, .. .,r+ 1 Thus, if the lemma is true for
k=r,itistruefork =r + 1, and since it is truefork = 1 andk =2, itis
true for any positive integer k.

Lemma 7. Ifq,,q,,. . ., q,areprimes, andp|q1q2 -+ “ga, thenp =g,
for some k.

Proof. From Lemma 6 we know that p |qk for some k. Since p and g,
are primes, p = g,. (The only positive divisors of g, are 1 and g,, and p
is not 1.)

Theorem 2. The Unique Factorization Theorem. Any positive integer
can be written as a product of primes in one and only one way.

Proof. Recall that we agreed to consider as identical all factorizations
that differ only in the order of the factors.

We know already from Lemma 2 that any integer n, » > 1 can be
written as a product of primes. Thus to complete the proof of the
theorem, we need to show thatn cannot have two such representations.
That is, if

2 n=pp2" " "DPm and n=4qi19s " " " {qr,

then we must show that the same primes appear in each product, and
the same number of times, though their order may be different. That is,

we must show that the integersp,,p,, . . .,P. arejust a rearrangement
of the integers g, q,, . . ., q,.. From (2) we see that since le'l,
Pilgq: - q..

From Lemma 7, it follows that p, = g; for some i. If we divide

PiP2 " " "Pm =492 " " " (qr
by the common factor, we have
(©) P2P3 " "Pm=dGs " " "qi-1Qi+1 " " Gr-

Because p, divides the left-hand side of this equation, it also divides the
right-hand side. Applying Lemma 7 again, it follows that p, =g; for
somej(j=1,2,...,i—1,i +1,.. . ,r). Cancel this factor from both
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sides of (3), and continue the process. Eventually we will find that each
p is ag. We cannot run out of g’s before all the p’s are gone, because we
would then have a product of primes equal to 1, which is impossible. If
we repeat the argument with the p’s and g’s interchanged, we see that

each g is ap. Thus the numbers p,,p,, . . . ,Pn are arearrangement of
qi,qz2,- - -, and the two factorizations differ only in the order of the
factors.

The uniqueness of the prime decomposition can also be efficiently
proved by induction, though the idea is no different. The theorem is
true, by inspection, forn = 2. Suppose that it is true forn =< k. Suppose
that & + 1 has two representations:

k+1=pps Pm=0q:192 " " qr-

As in the last proof, p, = g, for some i, so

P2P3 " " "Pm =492 " " " qGi-Gi+1 * "~ " qr.

But this number is less than or equal to k, and by the induction assump-
tion, its prime decomposition is unique. Hence the integersg,,g,,. . .,

Gi-15 Gi+15 - - - >y are a rearrangement of p,, ps, . . ., P, and since
p1 = q; the proof is complete.

Because of your long experience with the positive integers (can you
remember what it was like not to know what 2 + 3 was?), you may not
find the unique factorization theorem very exciting; you may even
think that it is obvious and self-evident. The following example is in-
tended to show that it is not as self-evident as you might think: we will
construct a number system in which the unique factorization theorem is
not true. Consider the integers 1, 5,9, 13,17, . . . ; that is, all integers
of the form4n +1,n=0,1,. . . . We will call an element of this set
prome if it has no divisors other than 1 and itselfin the set. For example,
21 is prome, whereas 25 = 5-5 is not.

* Exercise 4. Which members of the set less than 100 are not prome?

In the same way that we proved Lemmas 1 and 2, we can show that
every member of the set has a prome divisor and can be written as a
product of promes. (You are invited to inspect the proofs of Lemmas 1
and 2 to see if any words need to be changed.) But an example shows
that the prome decomposition of an integer in the set is not always
unique:

693 =21-33=9-77,

and 9, 21, 33, and 77 are all prome.
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From the unique factorization theorem it follows that each positive
integer can be written in exactly one way in the form

n :plexl)zez PR .pkfk,

where e; = 1,i=1,2, . ..,k each p; is a prime, and p; # p; for
i #j. We call this representation.the prime-power decomposition of
n, and whenever we write

f n=pPa" 0 i

it will be understood, unless specified otherwise, that all the exponents
are positive and the primes are distinct. The factor table in Appendix C
gives the smallest prime that divides n for all » less than 10,000 and not
divisible by 2 or 5. With the aid of this table, the prime-power decom-
position for any » < 10,000 can be found readily. For example, take
8001. It is clearly not divisible by 2 or 5, and Table A gives its smallest
prime factor as 3. Then 8001/3 = 2667, and the table shows that 3 is a
factor of 2667: 2667/3 = 889. Again referring to the table, we see that
7]889. Finally, 889/7 = 127, which is prime. Thus

8001 = 32-7-127.
Exercise 5. What is the prime-power decomposition of 7950?

To conclude this section, we note that the prime decomposition of
integers gives another way of finding greatest common divisors besides
the Euclidean algorithm. For example, consider n = 120 = 23-3-5 and
m =252 =22-32-7. We see that 22 divides m and n, but no higher power
of 2 is a common divisor of m and n. Also, 3 divides m and n, and no
higher power of 3 is a common divisor. Furthermore, no other prime
divides both 2 and n. Thus 22-3 is the greatest common divisor of m
and n. Given the prime-power decompositions of rn and n, we can write
m and n as products of the same primes by inserting primes with the
exponent zero where necessary. For example,

120 = 23-3.51.7° and 252 =28-3%-59-71,

In general, we have

Theorem 3. Ife; =-0,f;=0,(=1,2,...,k),

m=p;“p* - - -pp™ and  n=pSp,t- - pty
then
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(m’ n) =p1§1p2£2 IR pkgkﬂ

where g; = min(esf),i=1,2,. . . , k.

We wi ll omit a formal proof, but you should have no trouble convinc-

ing yourself that it is true.

Problems
* 1. Find the prime-power decompositions of 1234, 34560, and 111111.

2. Find the prime-power decompositions of 2345, 45670, and 999999999999.
(Note that 101|1000001.)

3. Tartaglia (1556) claimed that the sums

1+2+4, 1+2+4+8, 1+2+4+8+16, ---

are alternately prime and composite. Show that he was wrong.

4. (a) DeBouvelles (1509) claimed that one or both of 6n + 1 and 6n — 1 are

primes for all n = 1. Show that he was wrong.
(b) Show that there are infinitely many » such that both 6n — 1 and 6n + 1
are composite.

5. Prove that if n is a square, then each exponent in its prime-power decom-
position is even.

6. Prove thatif each exponent in the prime-power decomposition of n is even,
then # is a square.

*t 7. Find the smallest integer divisible by 2 and 3 which is simultaneously a

square and a fifth power.

8. If d|ab, does it follow that d|a or d|b?

* 9, Is it possible for a prime p to divide both n and n + 1 (n =-1)?
10. Prove that n(n + 1) is never a square for n > 0.

*F 11

12

* 13

14
*F 15

(a) Verify that 25-9® = 2592,
(b) Is 2%-a® = 25ab possible for other a, b? (Here 25ab denotes the digits of
25-a® and not a product.)

Let p be the least prime factor of n, where n is composite. Prove that if
p >n'?, then n/p is prime.

True or false? If p and g divide n, and each is greater than n!’4, then n/pq is
prime.

Prove that if n is composite, then 2* — 1 is composite.

Is it true that if 2" — 1 is composite, then n is composite?
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Linear Diophantine Equations

Consider the following variation on an old problem:

In a corral there are cowboys and an odd number of horses.
There are 20 legs in all: how many belong to horses?

If we let & be the number of horses and ¢ the number of cowboys in the »

corral, then we know that
(1) 4h + 2c =20,

assuming that all the horses and cowboys are whole. This equation has
infinitely many solutions—for example,

h -1 0 53 V2
c 12 10 203 10-2V2

But none of these fit the requirements of the problem: we want 4 and ¢
to be integers, and positive ones at that.

Equations of this sort, in which we look for solutions in a restricted
class of numbers—be they positive integers, negative integers, rational
numbers, or whatever—are called diophantine equations, after
Diophantus. Diophantus was probably an Egyptian who received a
Greek education, long ago in Alexandria. It is not certain how long ago,
but the difference between 1700 and 1850 years is not really important.
What is important are the ideas he had, never had before by anyone

20
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else, and the influence of those ideas. He started the evolution of our
algebraic notation, and he was the first to pose and solve problems that
called for solutions in integers or rational numbers. Other diophantine
equations we will consider in later sections include

xt+yt=z2, xt—2y2=1, and Xt 4yt =z,

where we will look for solutions in integers. All of these equations have
infinitely many solutions in real or complex numbers, but the third has
no solutions in integers except the trivial ones where either x or y is
zero. In contrast, the first and second equations both have infinitely
many solutions in integers.

In this section we will consider the simplest diophantine equation:
the linear diophantine equation

ax + by =c,

where a, b, and ¢ are integers. We want to find solutions in integers x
and y. The equation ax + by = ¢ clearly has infinitely many solutions in
rational numbers (and hence infinitely many solutions in real numbers),
namely those given by

x =1, y =(c —at)lb

for any rational number ¢, if b# 0. But such an equation may have no
solutions at all in integers. For example, 2x + 4y = 5 has none.

Exercise 1. Why not?

With the aid of results from Section 1, we can find all of the integer
solutions of ax + by = c¢. Before we start, let us solve the horses and
cowboys problem (1) by trial. Dividing both sides of the equation by 2,
we have 2k + ¢ = 10, or
_ 10 -¢ ]

h="3

Since h and ¢ must be positive integers, we may letc=1,2,. .. ,9
(if c > 9, then h is not positive) and calculate the corresponding values
of h:

c 12 3 4 S5 6 78 9
h 9”2 4 772 3 SR 2 32 1 112

Hence the diophantine equation has four solutions in positive integers:
c, h)=(2,4), 4,3),(6,2),and (8, 1). But since the problem said that
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the corral contained an odd number of horses and cowboys (plural), we
get the unique answer: 12 legs belong to horses. Trial is sometimes the
best way to solve a diophantine equation, but we want something surer.
If we can find just one solution of the linear diophantine equation,
then we can find infinitely many. (In keeping with our convention that
lower case italic letters denote integers unless we say otherwise, by
‘“‘solution”’ we mean ‘‘solution in integers.’’) We prove this in

Lemma 1. 1If x,, y, is a solution of ax + by =c, then so is
Xo + bt, Yo —at

for any integer 7.

Proof. We are given that ax, + by, = c. Thus
alxg + bt) + b(yy —at) =axy + abt + by, — bat
=axg + by,
=c,

SO xo + bt, yo, — at satisfies the equation too. For example, we can see
by inspection that

Sx + 6y =17

is satisfied by x = 1 andy = 2. It follows from Lemma 1 thatx =1 + 61,
y =2 — 5t is also a solution for any integer . Thus we can write down
as many solutions as we please:

t 0 1 -1 3 =5 17 -1000

X 1 7 -5 19 -29 103 -5999

y 2 -3 7 —13 27 —-83 5002

Each pair x, y satisfies 5x + 6y = 17.

Exercise 2. Find by inspection a solution of x + 5y = 10 and use it to
write five other solutions.

The next lemma lets us know when an equation has a solution and
when it does not.

Lemma 2. If (a, b)|c, then ax + by = c has no solutions, and if (a, b)|c,
then ax + by = ¢ has a solution.
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Proof. Suppose that there ave integers x,, y, such that ax, + by, =c.
Since (a, b)|ax, and (a, b)|by,, it follows that (a, b)|c. Conversely,
suppose that (a, b) | c. Thenc = m(a, b) for some m. From Theorem 4 of
Section 1, we know that there are integers » and s such that

ar + bs = (a, b).
Then
a@rm) + b(sm) = m(a, b) =c,

and x =rm, y =sm is a solution.

* Exercise 3. Which of the following linear diophantine equations is im-

possible? (We will say that a diophantine equation is impossible if it has
no solutions.)

(@) 14x + 34y = 90. (b) 14x + 35y =91. (c) 14x + 36y = 93.

Put d = (a, b). Lemma 2 says that if ax + by = ¢ has a solution, then
d\c. Puta =da’,b =db’,and c = dc'. If we divide ax + by = c by d we
get

ax+by=c’;
this equation has the same set of solutions as ax + by = ¢, and we know
from Theorem 1 of Section 1 that (a’, b') = 1. Thus, if a linear diophan-
tine equation has solutions, then we can find them from an equation

whose coefficients are relatively prime. For example, the first two
equations of Exercise 3 are

Tx + 17v =45 and 2x + 5y =13,

and (7, 17) = 2, 5) = 1.

The equation 2x + Sy = 13 has for one solutionx =4 andy = 1, and
from Lemma 1 we know thatx =4 + 5¢t,y = 1 — 2t is a solution for any
integer ¢. In the next lemma, we will show that these are all the so-
lutions to the equation. The problem of finding all solutions of a
diophantine equation is quite distinct from the problem of finding some
solutions. It is also more difficult in general. For example, the equation

x3+y3=z%+w?
has solutions given by
x=1—(s —31)(s* + 31?),
y=—1+(s+30(s* + 317,
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z=s5 + 3t — (s + 31?)%,
w=—s + 3t + (s + 3%)%,
where s and t may be any integers. You may verify this by multiplica-

tion, if you have the patience, but not all integer solutions are given by
this formula.

Lemma3. Suppose that(a, b) = 1 and x,, y, is a solution of ax + by =c.
Then all solutions of ax + by = ¢ are given by ’

x =xq+ bt,
y=y0—at7

where ¢ is an integer.

Proof. We see from Lemma 2 that the equation does have a solution,
because (a, b) = 1 and llc for all ¢. Then, let r, s be any solution of
ax + by = c. We want to show that r = x, + bt and s = y, — at for some
integer t. From ax, + by, = ¢ follows

¢ —c = (axy + byy) — (ar + bs)
or

2 alxeg—r) + b(y,—s)=0.

Because a|a(x, — ) and a |0, we have a|b(y, —s). But we have sup-
posed thata and b are relatively prime. It follows from Corollary 1 of
Section 1 that a 1 (yo — s). That is, there is an integer ¢ such that

3) at =y, —s.
Substituting in (2), this gives
alxg —r) + bat =0;

because a # 0, we may cancel it to get
4) xo—F +bt =0.
But (3) and (4) say that

s =y, —at,

r=xq +bt;

since r, s was any solution, the lemma is proved.

For example, 19 + 80y = 1980 has a solution (found by inspection)
of x = 100 andy = 1. Lemma 3 then says that all solutions are given by
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x =100 + 80z, y=1-19,

where ¢ is an integer. In particular, all solutions with x and y positive
are (x, y) = (100, 1) and (20, 20).

Up to now, we have assumed that neither a nor b was 0. If either is 0,
the problem of solving ax + by = c is trivial. Ifa = 0, then x can take on
any value, andy can take on one or more, depending on whether by = ¢
has or does not have a solution in integers. It is similar if 4 = 0.

We can summarize the results of Lemmas 1 to 3 as follows:

Theorem 1. The linear diophantine equation ax + by =c has no so-
lutions if (q, b)Xc. If (a b) |c, there are infinitely many solutions,

_b_, __a_,
(a,b)" ” (@, b)"

where r, s is any solution and ¢ is an integer.

X=r + =S

In Section 5 we will see how to find the solution r, s using congru-
ences. Theorem 1 should not be committed to memory, since it is only
a statement of the process of solving linear diophantine equations, and
the process is easy. For example, let us find all the solutions of
2x + 6y = 18. Dividing out the common factor, we have x + 3y = 9. By
inspection, y = 0, x = 9 is a solution. Hence all solutions are given by

5) x =9+ 31, y=-t,

where ¢ is an integer.
Exercise 4. Find all solutions of 2x + 6y = 20.

Exercise 5. Find all the solutions of 2x + 6y = 18 in positive integers.
(Note that from (5), this is the same as asking for integers ¢ such that
9+3t>0and —t>0.)

Linear diophantine equations can often be disguised in the ‘‘story
problem’’ so dreaded by students, such as the one at the start of this
section. Several of them appear among the problems, and they are not
there solely to make students’ lives miserable. Solving one is doing in
miniature what a mathematician must do when confronted with a real
problem from the real world: translate the problem into a mathematical
one (that is the hard part), deal with the mathematical problem (that
can be hard too), and apply the result to the original problem.
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Problems

* 1. Find all the integer solutionsof x + y = 2, 3x —4y = 5, and 15x + 16y = 17.

2. Find all the integer solutions of 2x+y=2, 3x—4y =0, and
15x + 18y = 17.

* 3, Find the solutions in positive integers of x +y =2, 3x —4y =5, and
6x + 15y = 51.

4. Find all the solutions in positive integers of 2x +y =2, 3x —4y =0, and
Tx + 15y = 51.

* 5. Find all the positive solutions in integers of

x +y+z =31,
x +2y +3z=41.

6. Find the five different ways a collection of 100 coins—pennies, dimes, and
quarters—can be worth exactly $4.99.

* 7. A man bought a dozen pieces of fruit—apples and oranges—for 99 cents. If
an apple costs 3 cents more than an orange, and he bought more apples
than oranges, how many of each did he buy?

8. The enrollment in a number theory class consists of sophomores, juniors,
and backward seniors. If each sophomore contributes $1.25, each junior
$.90, and each senior $.50, the instructor will have a fund of $25. There are
26 students; how many of each?

* 9, The following problem first appeared in an Indian book written around 850
AD. Three merchants found a purse along the way. One of them said, *‘If I
secure this purse, I shall become twice as rich as both of you with your
money on hand.”” Then the second said, *‘I shall become thrice as rich as
both of you.”” The third man said, ‘‘I shall become five times as rich as
both of you.’” How much did each merchant have, and how much was in
the purse?

10. A man cashes a check for d dollars and ¢ cents at a bank. Assume that the

teller by mistake gives the man ¢ dollars and d cents. Assume that the man
does notnotice the error until he has spent 23 cents. Assume further that he
then notices that he has 24 dollars and 2¢ cents. Assume still further that he
asks you what amount the check was for. Assuming that you can accept all
the assumptions, what is the answer?
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Congruences

Besides being quite pretty, congruences have many applications and
will be used constantly in what follows. No one who lacks an acquain-
tance with congruences can claim to know much about number theory.
As an example of their usefulness, it is easy to show, by using congru-
ences, that no integer of the form 8n + 7 is a sum of three squares. We
will verify this later.

We say that a is congruent to b modulo m (in symbols,a = b (mod m))
if and only if m | (@ —b), and we will suppose always that m > 0.

For example, 1 = 5 (mod 4), —2 = 9 (mod 11), 6 = 20 (mod 7), and
720 = 0 (mod 10).

Exercise 1. True or false? 91= 0 (mod 7). 3+ 5+ 7= 5 (mod 10).
-2 =2 (mod 8). 112= 1 (mod 3).

Really, m I(a —b)anda = b (mod m) are only different notations for
the same property, but a good notation can make things easy to see.
Notation is vital. The ancient Greek mathematicians from 600 Bc to 300
AD did not develop algebra at all, though they did such a fine job with
geometry that Euclid’s Elements was used as a textbook for 2000 years.
It was not because they could not have—there is no question that
Archimedes could have solved the general cubic polynomial equation,
perhaps in his head, if he had put his mind to it and had had a satisfac-

27
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tory notation—it was the lack of notation that stopped them. The solu-
tion of the cubic had to wait another 1700 years or so. The congruence
notation was invented by the great mathematician and physicist Carl
Friedrich Gauss (1777-1855), to whom is due quite a bit of the content
of this book, and any other number theory book. His notation simplifies
the proofs of theorems that would be difficult even to state without it.
Another example of the value of a good notation is in calculus, in which
Leibniz’s notation (dy/dx, [y dx) was superior to Newton’s (¥, y').
There is another way to look at congruences:

Theorem 1. a = b (mod m) if and only if there is an integer & such that
a=b+km. .

Proof. Suppose that a = b (mod m). Then, from the definition of con-
gruence, m|(a —b). From the definition of divisibility, we know that
since there is an integer k such thatkm =a — b, thena = b + km. Con-
versely, suppose thata =b + km.

Exercise 2. Complete the proof.

Theorem 2. Every integer is congruent (mod m) to exactly one of 0, 1,
.,m—1.

Proof. Writea =gm + r, with 0 < r < m. We know from Theorem 2 of
Section 1 that ¢ and r are uniquely determined. Since a = r (mod m),
the theorem is proved.

We call the number r in the last theorem the least residue of a (mod
m). For example, the least residues of 71 modulo 2,3, 5, 7, and 11 are 1,
2,1, 1, and 5, respectively.

Exercise 3. To what least residue (mod 11) is each of 23, 29, 31, 37, and
41 congruent?

Yet another way of looking at congruences is given by

Theorem 3. a = b (mod m) if and only if a and b leave the same remain-
der on division by m.
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Proof. If a and b leave the same remainder » when divided by m, then
a=gm+r and b=g.m+r
for some integers g, and g,. It follows that
a—b=(@m+r)—(gm +r)y=m(, —q.).

From the definition of divisibility, we have m ] (a — b). From the defini-
tion of congruence, we conclude that a = b (mod m). To prove the
converse, suppose thata = b (mod m). Thena = b = r (mod m), where
r is a least residue modulo m. Then from Theorem 1,

a=qm-+r and b=qgan +r

for some integers g, and g,; since 0 = r <m, the theorem is proved.

For example, divide 1609 by 197: the quotient is 8 and the remainder
is 33. Divide 1215 by 197: the quotient is 6 and the remainder is 33. It
follows that 1609 = 1215 (mod 197), and in fact

1609 — 1215 =394 = 2 - 197.

It follows from Theorems 1 and 3 that the phrases ‘“‘n = 7 (mod 8),”"
“n =7 + 8k for some integer k,”” and *‘n leaves the remainder 7 when
divided by 8’ are different ways of saying the same thing.

Exercise 4. Say ‘“‘n is odd” in three other ways.
Exercise 5. Prove that p Ia if and only if a = 0 (mod p).
Congruence acts like equality in many ways.

Lemma 1. For integers a, b, ¢, and d
(@) a = a (mod m).
(b) If a = b (mod m), then b = a (mod m).
(c) If a = b (mod m) and b = ¢ (mod m), then a = ¢ (mod m).
(d) f a=b (mod m) and ¢ = d (mod m), thena +c = b +d (mod
m).
(e) Ifa = b (mod m) and ¢ = d (mod m), then ac = bd (mod m).

Proof. All of these follow directly from the definition of congruence. .
Here is a proof of (e): We are given thatb —a = km and d — ¢ = jm for
some integers k& and j; thus
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ac —bd = ac — (a + km)(c +jm)
=qc — ac —ajm —ckm — kjm?*
=m(—aj — ck —kjm);

from the definition of congruence, ac = bd (mod m).

Exercises 6, 7, 8, and 9. Prove parts (a), (b), (c), and (d).

Note that the lemma implies that we may substitute in congruences
just as we do in equations. For example, if x = 2 (mod 5), then

22 —x+3=24-24+3=9=4 (mod 5).

Although ab = ac and a # 0 imply b = ¢ for all integers a, b, and ¢, it
is not true that ab = ac (mod m) and a ¥ 0 (mod m) imply b = ¢ (mod
m). (The symbol ¥ means ‘‘not congruent to.”’) For example,

3-4 =3-8 (mod 12) but 4 # 8 (mod 12).
* Exercise 10. Construct a like example for modulus 10.

Although we cannot cancel freely, all is not lost, as we shall see from
Theorem 4. If ac = bc (mod m) and (¢, m) =1, thena = b (mod m).

Proof. From the definition of congruence, m \ (ac — bc); consequently,
m ]c(a —b). Because (m, c) = 1, we can conclude from Theorem 5 of
Section 1 that m|(a — b). That is, a = b (mod m).

* Exercise 11. What values of x satisfy
(@) 2x = 4 (mod 7)? (b) 2x =1 (mod 7)?
(Hint for (b): 1 = 8 (mod 7).)
We can, then, cancel a factor that appears on both sides of a congru-

ence if it is relatively prime to the modulus. We now consider the case
in which the factor and the modulus are not relatively prime.

Theorem 5. If ac = bc (mod m) and (¢, m) =d, thena = b (mod m/d).



Congruences 31

Proof. If ac = bc (mod m), thenm |c(a —b)and m/d | (c/d)(a — b). Since
we know that (m/d, c/d) =1, from Theorem 5 of Section 1 we get
mid|(a — b), so a = b (mod m/d).

That is, we can cancel a common factor from both sides of a congru-
ence if we divide the modulus by its greatest common divisor with the
factor. For example, 30x = 27 (mod 33) implies 10x = 9 (mod 11).

[

Exercise 12. Which x will satisfy 2x = 4 (mod 6)?

Now we can see how easy it is to show that no integer of the form
8n + 7 is the sum of three squares. Suppose that £ = 81 + 7 is the sum
of three squares. Then k= 7 (mod 8) and k = a® + b% + ¢? for some
integers a, b, and c. Thus

a? + b? + c2= 7 (mod 8).
We now show that this last congruence is impossible for any integers a,

b, and c. What values can x? assume, modulo 8? Every integer has one
of 0, 1,2,3,4,5,6, and 7 for a least residue (mod 8), and

=0, =1, 2=4, =1
4 =0, =1, 6>= 4, 7?=1,

I
I

all modulo 8. Thus the square of any integer is congruent modulo 8 to
one of 0, 1, and 4. It is impossible to make any combination of three
numbers selected from 0, 1, and 4 add up to anything congruent to 7
(mod 8). (The statements 1 + 1+ 4= 6and 0 + 4 + 4 = 8 (mod 8) are
as close as you can come.) Hence a? + b? + c? is never congruent to 7
(mod 8) for any integers a, b, and c. Thus a® + b2 +c?2=28u +7is an
impossible equation.

You may already know the handy test for divisibility by 9: an integer
is divisible by 9 if and only if the sum of its digits is divisible by 9, and
you may already know why it is true. Congruences make the proof
trivial. Since 10= 1 (mod 9), 10" = 1= 1 (mod 9), and that is all we
need to prove

Theorem 6. Every integer is congruent (mod 9) to the sum of its digits.

Proof. Take an integer n, and let its digital representation by
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didierdi— * - dd,.
That is,

n =d;c10k + dk_IIO"_l + dk_210"‘2 + -+ d1101 + d010°
=d, +diy +dis + - - - +dp (mod 9),

which is what we wanted to show.

This theorem shows why the process of casting out nines to check an
addition or a multiplication works. The rule was a feature of many
arithmetic books in the past, when long columns of numbers had to be
added by hand and there were no mechanical devices to perform mul-
tiplications. Now we can all have pocket calculators, but it is wise to be
prepared for the time when our batteries fail. If two numbers are equal,
they are congruent to any modulus, 9 in particular. So if we are told
that (314)(159) = 49826, we can see right away that we are being lied to,
because

(314)(159)= (3 + 1 + 4)(1 + 5+ 9) = 8-15= 8(1 + 5)
=48=4+8=12=1+2=3(mod9),

while

49826=4+9+8+2+6=29=2+9=11=1+1
= 2 (mod 9):

the numbers are not congruent (mod 9), so they cannot be equal.

Problems

Find the least residue of 1492 (mod 4), (mod 10), and (mod 101).

. Find the least residue of 1789 (mod 4), (mod 10), and (mod 101).

. Prove or disprove that if a = b (mod m), then a* = b* (mod m).

. Prove or disprove that ifa®* = b2 (mod m), thena = b or —b (mod m).
. Find all m such that 1066 = 1776 (mod m).

. Find all m such that 1848 = 1914 (mod m).

. If k =1 (mod 4), then what is 6 + 5 congruent to (mod 4)?

. Show that every prime (except 2) is congruent to 1 or 3 (mod 4).

* %

. Show that every prime (except 2 or 3) is congruent to 1 or 5 (mod 6).

—
o

. What can primes (except 2, 3, or 5) be congruent to (mod 30)?
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12.
. What can the last digit of a fourth power be?
14.
15.
16.

18.

19.

20.
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In the multiplication 31415-92653 = 2910 93995, one digit in the product is
missing and all the others are correct. Find the missing digit without doing
the multiplication.

Show that no square has as its last digit, 2, 3, 7, or 8.

Show that the difference of two consecutive cubes is never divisible by 3.
Show that the difference of two consecutive cubes is never divisible by 5.
Show that

dp10F +dp_ 1105 + - - - +d,10 + d,
=d,—d, +d,—d;s+-- +(~1)d, (mod 11)

and deduce a test for divisibility by 11.

- A says, '‘27,182,818,284,590,452 s divisible by 11.”" B says, **No, it isn't.”’

Who is right?

A palindrome is a number that reads the same backward as forward.
Examples are 22, 1331, and 935686539.

(a) Prove that every four-digit palindrome is divisible by 11.
(b) What about six-digit palindromes?

Show that if n = 4 (mod 9), then n cannot be written as the sum of three
cubes.

Show that fork > 0and m = 1,x = 1 (mod m*) implies X = 1 (mod m**').



Linear Congruences

After defining congruences and studying some of their properties, it is
natural to look at congruences involving unknowns, like 3x = 4 (mod 5)
and x'" + 3x — 3 = 0 (mod 31), and see how to solve them, if we can.
The simplest such congruence is the linear congruence ax = b (mod m),
and thisis what this sectionis devoted to. The congruence ax = b (mod
m) has a solution if and only if there are integers x and & such that
ax =b + km. Hence, the problem of solving linear congruences is es-
sentially the same as that of solving linear diophantine equations, and
Theorem 1 of this section is the same as Theorem 1 of Section 3, but in
a different notation.

If one integer satisfies ax = b (mod m), then there are infinitely many.
For example, the table below shows that 3x = 4 (mod 5) is true if x = 3

X 01 2 3 456 7289

3x(modS) { 0 3 1 4 2 0 3 1 4 2
or x =8, and it is clear that it is also true if x = 13, 18, 23, . . . or
x=-2,-7,—12, . . ..1Ingeneral, if r is an integer such thatar = b
(mod m), then all of the integers r +m, r +2m, . . . ,r —m,r —2m,

. . satisfy the congruence, since

a(r +km)=ar= b (mod m)

34
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for any integer k. Among the integers r + km, k=0, =1, =2, . . .,
there will be exactly one—say s—that satisfies 0 = s <m. This is be-
cause every integer lies between two successive multiples of m. If r
satisfies the congruence and km =< r < (k + l)m for some k, then
0=r—km <m; we can put s =r —km. We will single this integer out
and say that by a solution to ax = b (mod m), we mean a number r such
that ar = b (mod m) and r is a least residue (mod m). Thus, the solution
to3x = 4 (mod 5) is 3, because it makes the congruence true and it is a
least residue (mod 5).

Unlike the familiar linear equation ax = b, the linear congruence
ax = b (mod m) may have no solutions, exactly one solution, or many
solutions. For example, 2x = 1 (mod 3) is satisfied by x = 2 and for no
other values of x that are least residues (mod 3). Hence it has just one
solution, namely 2. The congruence 2x = 1 (mod 4) has no solutions,
because 2x is congruent to 0 or 2 (mod 4) for any x. The congruence
2x = 4 (mod 6) has two solutions, 2 and 5.

¢ Exercise 1. Construct congruences modulo 12 with no solutions, just

one solution, and more than one solution.

Exercise 2. Which congruences have no solutions?

(@) 3x=1(mod 10), (b) 4x = 1 (mod 10), (c) 5x = 1 (mod 10),
(d) 6x =1 (mod 10), (e) 7x = 1 (mod 10).

I
[/

Exercise 3 (optional). After Exercise 2, can you guess a criterion for
telling when a congruence has no solutions?

We will now set out to prove a theorem that will let us see how many
solutions a linear congruence has.

Lemma 1. 1If (q, m)[b, then ax

b (mod m) has no solutions.

Proof. We will prove the contrapositive, which is logically the same
thing: ifax = b (mod m) has a solution, then (a, m) Ib. Suppose that r is
a solution. Thenar = b (mod m), and from the definition of congruence,
m|(ar — b), or from the definition of divides, ar — b = km for some .
Since (a, m)|a and (a, m)|km, it follows that (a, m)|b.

I

For example, 6x = 7 (mod 8) has no solutions.
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Lemma 2. If (a, m) = 1, then ax = b (mod m) has exactly one solution.

Proof. Since (a, m) = 1, we know that there are integers r and s such
that ar + ms = 1. Multiplying by b gives

a(rb) + m(sb) =b.
We see that arb — b is a multiple of m, or
a(rb) = b (mod m).

The least residue of b modulo m is then a solution of the linear congru-
ence.

It remains to show that there is not more than one solution. Suppose
that both r and s are solutions. That is, since

ar = b (mod m) and as = b (mod m),

then ar = as (mod m). Because (a, m) = 1, we can apply Theorem 4 of
the last section, cancel the common factor, and get » = s (mod m). That
is, m | (r —s). But r and s are least residues (mod m), so

0=<r<m and 0<s<m.

Thus —m <r —s <m; together with m|(r —s), this givesr —s = 0, or
r =s, and the solution is unique. The above argument is quite general
and will be used often: if two least residues (mod m) are congruent
(mod m), then they are equal.

Inspection is one way of solving congruences with small moduli, and
another is substituting all possible values for the variable. But the best
way is to manipulate the coefficients until cancellation is possible. For
example, to solve 4x = 1 (mod 15), we can write

4x = 1= 16 (mod 15)

and cancel to get x =4 (mod 15). As another example, let us solve
14x = 27 (mod 31). From

14x = 27 = 58 (mod 31)
we get 7x = 29 (mod 31). We continue adding 31 until we can cancel:
Tx = 29 = 60 = 91 (mod 31),

so we get x = 13 (mod 31), and 13 is the solution.
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This method is the best to use when solving linear diophantine equa-
tions. The equation ax + by = ¢ implies the two congruences

ax = ¢ (mod b) and by = ¢ (mod a).

We can choose either one, solve for the variable, and then substitute
the result into the original equation to get all the solutions. For exam-
ple, let us solve 9 + 16y = 35. This gives 16y = 35 (mod 9) or 7y = 35
(mod 9), from which we gety = S (mod 9). Thatis,y = S + 9 for some
integer 7. Substituting this in the original equation, we get

9% + 16(5 + 9r) = 35,
or 9x + 144t = —45, orx + 16t = —5. We thus have all the solutions:

x=-=5-16t,
y=5+09t,

t an integer.

* Exercise 4. Solve

i

(a) 8x = 1 (mod 15), (b) 9x + 10y = 11.

There remains the c:c\se where (a, m)]b and (a, m) #1. Cancellation
reduces this to the case (a, m) = 1. For example, to solve 6x = 15 (mod
33), apply Theorem 4 of the last section to get 2x = 5 (mod 11) which is
satisfied by all integers x = 8 (mod 11). The solutions to the original
congruence are all of the least residues (mod 33) which satisfy it, and
these are 8, 19, and 30: (6, 33) =3, and the congruence has three
solutions. This is what happens in general.

Lemma 3. Letd = (a, m). If d|b, then ax = b (mod m) has exactly d
solutions.

Proof. If we cancel the common factor, we get a congruence
(ald)x = (bld) (mod m/d), which we know has exactly one solution, be-
cause (a/d, m/d)= 1. Call it r, and let s be any other solution of
ax = b (mod m). Then ar = as = b (mod m), and it follows from Theo-
rem 5 of the last section that r =s (mod m/d). That is, s —r =
k@n/d) or s =r + k(n/d) for some k. Puttingk =0,1,. . .,d—1, we
get numbers which are least residues (mod m), since

0 < r +k(ml/d) < (m/d) + (d — 1)(m/d) = d(mld) =m,
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and they all satisfy ax = b (mod m), because
(ald)(r + k(mld)) = (a/d)r = bld (mod m/d),
and this implies

a(y + k(mid)) = b (mod m).

Exercise 5. Determine the number of solutions of each of the following
congruences:

3x = 6 (mod 15), 4x = 8 (mod 15), 5x = 10 (mod 15),
6x = 11 (mod 15), 7x = 14 (mod 15).

Exercise 6. Find all of the solutions of Sx = 10 (mod 15).

We can summarize the results of Lemmas 1 to 3 in

Theorem 1. ax = b (mod m) has no solutions if (a, m)[b. If (a. m)|b,
then there are exactly (a, m) solutions.

* Exercise 7. Solve the rest of the congruences in Exercise 5.

In a Chinese work on mathematics written more than 1000 years ago,
there was a problem like, ‘‘Find a number that leaves a remainder of 1
when divided by 3, of 2 when divided by 5, and of 3 when divided by
7. It is hard to imagine a practical situation where such a problem
could arise. Mathematics was developed to deal with problems coming
from commerce, government, astronomy, and religion, and this one
does not seem to come from any one of those. Yet Babylonian clay
tablets, written more than 2000 years ago, contain some types of cubic
polynomial equations and their solutions, and those do not arise in
everyday life either. Both are examples of the fascination that mathe-
matics has had for the human mind—for some human minds, anyway.
After the practical problems are solved, mathematics is interesting for
its own sake.

We will now consider, for its own sake, and because it is useful
elsewhere in number theory, how to solve problems like the ancient
Chinese one mentioned above. In our notation, the problem is to find x
such that

x =1 (mod 3), x = 2 (mod 9), and x =3 (mod 7).
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- Exercise 8. Verify that 52 satisfies each of the three congruences.

The first congruence says thatx = 1 + 3k, for some k,. Substituting this
into the second congruence, we see that k; must satisfy

1 + 3k, = 2 (mod 5).
Solving, we get k; = 2 (mod 5). That is, k, = 2 + 5k, for some k,, and
thus

x=143k;=1+3Q2+ 5k;) =7+ 15%..

This x satisfies the first two congruences. If in addition x satisfies the
third, we must have

7 + 15, = 3 (mod 7).
Solving for k,, we get k, = 3 (mod 7). Thus

x =T+ 153 + Tks) = 52 + 105k,

satisfies all three congruences for any integer k5. Otherwise expressed,
any x = 52 (mod 105) satisfies the three congruences. In fact, 52 is the
unique solution modulo 105.

The next theorem amounts to nothing more than a statement that the
same procedure will always work.

Theorem 2. The Chinese Remainder Theorem. The system of congru-
ences

1) x = q; (mod m;), i=1,2,...,k,

where (n;, m;) = 1if i # j, has a unique solution modulo mm, - - - my.

Proof. We first show, by induction, that system (1) has a solution. The
result is obvious when k = 1. Let us consider the case k = 2. If x = q,
(mod m,), then x = a, + k,m, for some k,. If in addition x = a, (mod
m,), then

a;, +kum, = g, (mod m,)
or

kym, = a, ~ a, (mod my).

Because (mg, m;) = 1, we know that this congruence, with k; as the
unknown, has a unique solution modulo m,. Callit?. Thenk; =t + kon,
for some k,, and
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xX=aq + (t + kgmg)ml =q, +tm, (mod mlmg)

satisfies both congruences.
Suppose that system (1) has a solution (mod mm; - - - m,) for
k =r — 1. Then there is a solution, s, to the system

x = gq; (mod m,), i=1,2,...,r—1
But the system
x =5 (mod mym, - * - m,_,),
x =a, (modm,)

has a solution modulo the product of the moduli, just as in the case
k =2, because (m,m, - - - my_,, my) = 1. (This statement is true be-
cause no prime that divides m;, i =1,2,. . .,k — 1, can divide m,.)

It is easy to see that the solution is unique. If r and s are both
solutions of the system, then

rEsEai(modmi), i=1323---sk:
som|(r—s),i=1,2,. ..,k Thusr — s is a common multiple of m;,
ms, . . . ,my, and because the moduli are relatively prime in pairs, we
have mm, - - - mkl(r —5). But since r and s are least residues modulo
My - Mg,
—M g - P ¥ — 8§ < mMy 0 My,

whencer —s = 0.

Problems

*+ 1. Solve each of the following:
2x = 1 (mod 17). 3x = 1 (mod 17).
3x = 6 (mod 18). 40x = 777 (mod 1777).
2. Solve each of the following:
2¢ = 1 (mod 19). 3x = 1 (mod 19).
4x = 6 (mod 18). 20x = 984 (mod 1984).
* 3. Solve the systems
(a) x =1 (mod 2), x = 1 (mod 3).

(b) x =3 (mod 5), x =5 (mod 7), x = 7 (mod 11).
() 2x = 1 (mod 5), 3x = 2 (mod 7), 4x = 3 (mod 11).

4. Solve the systems
(a) x =1 (mod 2), x = 2 (mod 3).
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(b) x=2 (mod 5), 2x = 3 (mod 7), 3x = 4 (mod 11).
(c) x = 31 (mod 41), x = 59 (mod 26).

. What possibilities are there for the number of solutions of a linear congru-

ence (mod 20)?

. Construct linear congruences modulo 20 with no solutions, just one solu-

tion, and more than one solution. Can you find one with 20 solutions?

. Solve 9x = 4 (mod 1453).

8. Solve 4x = 9 (mod 1453).

9. Solve for x and y:

10.

11.

12.

13.
14.

16.

17.

18.

19.

20.

(@) x+2y=3(mod 7), 3x + v = 2 (mod 7).
(b) x +2y = 3 (mod 6), 3x +y = 2 (mod 6).
Solve for x and y:

(@ x+2y=3(mod9), 3x +y = 2 (mod 9).
(b) x +2y = 3 (mod 10), 3x + y = 2 (mod 10).

When the marchers in the annual Mathematics Department Parade lined up
4 abreast, there was 1 odd person; when they tried 5 in a line, there were 2
left over; and when 7 abreast, there were 3 left over. How large is the
Department?

Find a multiple of 7 that leaves the remainder 1 when divided by 2, 3, 4, 5,
or 6.

Find the smallest odd n, n > 3, such that 3|n, 5|n + 2, and 7|n + 4.

Find the smallest integer n, n > 2, such that 2|n, 3|n + 1,4|n + 2, 5|n + 3,
and 6|n +4.

. Find a positive integer such that half of it is a square, a third ofitis a:cube,

and a fifth of it is a fifth power.
The three consecutive integers 48, 49, and 50 each have a square factor.

(a) Find n such that 3*|n, 4%|n + 1, and 5*|n + 2.
(b) Can you find n such that 22| n, 32| n + 1, and 4*| n + 2?

Ifx=r (mod m) and x = s (mod m + 1), show that

x=r(m+ 1) —sm (mod m(m + 1)).

What three positive integers, upon being multiplied by 3, 5, and 7 re-
spectively and the products divided by 20, have remainders in arithmetic
progression with common difference 1 and quotients equal to remainders?

Suppose that the moduli in the system
x = aq; (mod m;), i=1,2,. ...,k

are not relatively prime in pairs. Find a condition that the a; must satisfy in
order that the system have a solution.

How many muliiples.of b are there in the sequence

a, 2a, 3a,. .., ba?



Section

Fermat’s and Wilson’s Theorems

In this section we will prove

Theorem 1. Fermar's Theorem. If p is prime and (a, p) = 1, then

a*~t= 1 (mod p)

This theorem was first stated, without proof, by Fermat in 1640.
Fermat was a French lawyer and judge who did mathematics in his
spare time and for the fun of it. Besides his large contributions to
number theory, he was, with Pascal, responsible for the beginnings of
probability theory. He was the most remarkable amateur in the history
of mathematics, both in the original meaning of ‘‘lover of’’ and in the
present-day meaning of ‘‘nonprofessional,”’ and I think that he had the
best mathematical mind of the seventeenth century, after Newton's.
His theorem is vital, as we shall see in the study of quadratic congru-
ences, and it has many other applications. Its statement and proof are

“simple, but its effects are great. We will also prove

Theorem 2. Wilson’s Theorem. p is a prime if and only if

(p — 1)!'= —1 (mod p).

42
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Recall that n! =n(h — 1)n —2). . .3 x2x1forn=1and 0! =1,
by definition. Factorials grow rapidly; 2!is only 2 and 3! = 6, but 15! is
already 1307674368000. Wilson’s Theorem is not really Wilson’s. He
only guessed that it was true and told the mathematician Waring about
it. Waring was unable to prove it either, but he published it without
proof in 1770. It was almost immediately proved by Lagrange, one of
the most powerful of eighteenth-century mathematicians. Wilson was
not even the first to guess the theorem: Leibniz also noted it in 1682,
perhaps while resting from developing calculus. However, Wilson’s
name is inextricably wedded to the theorem, and through it he has
achieved mathematical immortality.

Wilson’s Theorem is remarkable because it gives a condition both
necessary and sufficient for a number to be prime. Thus, in theory, the
problem of determining whether a given number is prime is completely
solved. But for large integers, the computational difficulties are great.
For the moderate-sized prime

p =162,259,276,829,213,363,391,578,010,288,127,

the calculation of the least residue of (p — 1)! (mod p) would take about
10?3 multiplications of two 33-digit numbers, each followed by division
by p. Even our fastest computers are not fast enough. Compare, for
example, the calculation of 12! (mod 13) with the labor in verifying that
13 is divisible by neither 2 nor 3.

To see that Fermat’s Theorem is true in a special case, take p = 7.
Successive multiplication gives (mod 7),
2

a a a’ a* a® ab

AN D WN —
—_ NN AN -
A= ==
—_—N A RN -
AW WA —
[ s T ey

soa® = 1(mod 7)foralla such that (a, 7) = 1. Wilson’s Theorem is also
true for small values of n:

n 234 5 6 7 8 9 10 11
(n —1)! 12624 120 720 5040 40320 362880 3628800
(n—-1)!modn) [ 122 4 0 6 0 0 0 10
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Note that both Fermat’s and Wilson’s Theorems are true when p = 2.
As always, p denotes a prime, but in the rest of this section we will
assume that p is an odd prime. That 2 is a prime is sometimes exas-
perating, but nothing can be done about it.

We start the proof of Fermat’s Theorem with

Lemma 1. If (a, m) = 1, then the least residues of

1 a; 2a,3a, . . . ,(m — 1a (mod m),

are
() 1,2,3, ..., m-—1

in some order.

Stated differently, if (@, m) = 1, then each integer is congruent (mod
m) to exactly one of a, 2a, . . . , (m — 1)a. For example, take m = 8
and a = 3: the numbers in (1) are then

3,6,9, 12, 15, 18, 21,
and their least residues (mod 8) are
3,6,1,4,7,2,5.

Proof. There are m — 1 numbers in (1), none congruent to 0 (mod m).
Hence each of them is congruent (mod ) to one of the numbers in (2).
If we show that no two of the integers in (1) are congruent (mod m),
then it follows that their least residues (mod m) are all different, and
hence are a permutationof 1,2, . . . ,m — 1. Suppose that two of the
integers in (1) are congruent (mod ): that is,

ra = sa (mod m);
because (g, m) =1 we can cancel (Theorem 4 of Section 4) and get
r=s (mod m).

But r and s are least residues modulo m; by an argument we have used
several times before, it follows that » =s. This proves the lemma.

Proof of Fermat’s Theorem. Given any primep, Lemma 1 says that if (a,
p) = 1, then the least residues of

a, 2, ..., (- 1a(modp)
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are a permutation of
1,2, ...,p— 1L
Hence their products are congruent (mod p):
a-2a-3a---(p—Da=1-2-3---(p—1) (mod p),

or
a*~'(p — D!'= (p — 1)! (mod p).

Since p and (p — 1)! are relatively prime, the last congruence gives
a*~ =1 (mod p),

which is Fermat’s Theorem.

Exercise 1. Verify that the theorem is true fora =2 andp = 5.

Fermat’s Theorem is sometimes stated in a slightly different way:

Corollary. If p is a prime, then
a? = a (mod p)

for all a.

Proof. If (a, p) = 1, this follows from Fermat's Theorem. If (a, p) =p,
then the corollary says 0 = 0 (mod p), which is true. There are no other
cases.

As an example, let us verify that 3'® = 1 (mod 17). It is not necessary
to calculate the large integer 3¢ and then divide it by 17; we can
proceed in stages, reducing modulo 17 as we go. We have

3*= 27 = 10 (mod 17).

Squaring, we get

36
squaring again yields 32 = 4 (mod 17). Thus

100 = -2 (mod 17);

6= 32.33-3=4-10-3=120=1 (mod 17).
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Exercise 2. Calculate 22 and 20'° (mod 11).

To prove Wilson’s Theorem, we need two lemmas:
Lemma 2. x*= 1 (mod p) has exactly two solutions: 1 and p — 1.

Proof. Letrbe any solution of x* = 1 (mod p). By solution we mean, as
we did for linear congruences, a least residue that satisfies the congru-
ence. We have r2 — 1 = 0 (mod p), so

ple+ De - 1).
Hencep|( + 1) orp|( — 1); otherwise expressed,
r+1=0 or r—1=0(mod p),
sor=p—1or1 (modp). Since r is a least residue (mod p), it follows

that r =p — 1 or 1. It is easy to verify that both of these numbers
actually satisfy x2= 1 (mod p).

Lemma 2 has a familiar analogy: x* = 1 is satisfied only whenx = 1 or
x =—1, and x>= 1 (mod p} is satisfied only when x = 1 (mod p) or
x = —1 (mod p).

If (a, p) = 1, we know that ax = 1 (mod p) has exactly one solution.
Let us denote it by a’; it is for congruence what the reciprocal is for
equality, since aa’ = 1 (mod p). For example, if p = 13 we have

all 23 45 6 7 8 9 10 11 12
a'll 7 9 10 8 11 2 5 3 4 6 12

Note that there no duplications in the second line. This is no accident,
and it is true in general; this is the content of the next lemma.

Lemma 3. Let p be an odd prime and let a' be the solution of ax = 1
(modp),a=1,2,. . .,p—1.a’=b" (modp)if and only ifa = b (mod
p). Furthermore, a = a' (mod p) if and only ifa =1 orp — 1.

Proof. Suppose that a’ = b’ (mod p). Then
b = aa'b = ab'b = a (mod p).
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Conversely, suppose that a = b (mod p). Then

b'=b'aa’=b'ba’' = a' (mod p).
For the second part of the proof, it follows from 1-1=(p—1)
(p—1=1(modp)that I'=1(mod p) and(p — 1)’ =p — 1 (mod p).
Conversely, if a = a' (mod p), then 1= aa’' = a? (mod p), and from
Lemma 2 we know that this is possible only ifa =1 orp — 1.

Proof of Wilson’s Theorem. From Lemma 3, we know that we can sepa-
rate the numbers

2,3,...,p-2

into (p — 3)/2 pairs such that each pair consists of an integer a and its
associated a’, which is different from a. For example, for p = 13 the
pairs

2,7, 3,9, (4, 10), (5, 8), (6, 11).

* Exercise 3. What are the pairs when p = 11?

The product of the two integers in each pair is congruent to 1 (mod
p), so it follows that

2:-3---(p—2)=1 (mod p).
Hence
p-D=1-23---(p=-2p-D=1-1"(p— 1= —1(modp),

and we have proved half of the theorem. It remains to prove the other
half and show that if

(3) n—-1D!'= —1 (mod n),

then n is a prime. Suppose that n = ab for some integers a and b, with
a #n. From (3), we have

nl(n— D+1,

and since a |n, we have
4) al(n — !+ 1.

But since a = n — 1, it follows that one of the factors of (n — 1)! is a
itself. Thus
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a|(n -1

(4) and (5) imply thata I 1. Hence the only positive divisors of n are

1 and n, and thus » is a prime.

Problems

B 1‘

What is the least residue of

5¢ (mod 7) 58 (mod 7) 19458 (mod 7)?

. What is the least residue of

5% (mod 11) 512 (mod 11) 1945'* (mod 11)?

3. What is the last digit of 7333?

4. What are the last two digits of 7333?

. What is the remainder when 314162 {s divided by 163?

6. What is the remainder when 3141¢? is divided by 7?

10.

12.

13.

14.
T 15.

. What is the remainder when 314+ is divided by 165? (Watch out—165 is

not prime!)

. What is the remainder when 2001291 is divided by 26?
. Show that

(p-Dp=-2)-(p~—r)=(-1)r(mod p),
forr=1,2,...,p—-1

(a) Calculate (n — 1)! (mod n) for n = 10, 12, 14, and 15.
(b) Guess a theorem and prove it.

. Show that2(p —3)!+ 1 = 0 (mod p).

In 1732 Euler wrote: ‘I derived [certain] results from the elegant theorem,
of whose truth I am certain, although I have no proof: a" — b” is divisible
by the prime n + 1 if neither a nor b is.”” Prove this theorem, using
Fermat’s Theorem.

Note that
6! = —1 (mod 7),
5111'= 1 (mod 7),
412! = —1 (mod 7),
313'= 1 (mod 7).
Try the same sort of calculation (mod 11).

Guess a theorem from the data of Problem 13, and prove it.

Suppose that p is an odd prime.
(a) Show that



16.

T 17.

18.

. For what # is it true that

20.
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[P 427714 ... 4+ (p —1)»'= —1 (mod p).
(b) Show that
P+2+---+(p—1P=0(modp).

Show that the converse of Fermat’s Theorem is false. [Broad hint: consider
234 (mod 341).]

Show that for any two different primes p, g,

(a) pq |(a**? —a**' —qa®*' +a*) for all a.

(b) pg|@*® —a? —a®+a)for all a.

Show that if p is an odd prime, then 2p |(22*~! - 2).

pld+n+n?+--- +n”??

Show that every odd prime except 5 divides some number of the form
111 . . . 11 (k digits, all ones).
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The Divisors of an Integer

It would be natural now to continue studying congruences by taking up
quadratic congruences, but partly for the sake of variety we will take
up a different subject and return to congruences later.

Let n be a positive integer. Let d(n) denote the number of positive
divisors of n (including 1 and #n), and let o(n), denote the sum of the
positive divisors of n. That is,

dn) = 2 1 and o) = 2 d.

din din

Z means the sum over the positive divisors of n. For example,
dln

> h(d) =h(1) + h(2) + h(3) + h(@4) + h(6) + h(12)
diiz
and
> d*=1+4+25+100.

al10
These functions occur frequently, and in this section we will derive
some of their properties. In the next section we will use them to
study perfect, abundant, and other kinds of numbers first considered
by the ancient Greek mathematicians and still of interest today.

Exercise 1. Verify that the following table is correct as far as it goes,
and complete it.

50
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n 123456 789 1011 12 13 14 15 16
dn) |1 2 2 3 2 4 2 4 3 4

If p is a prime, thend(p) = 2, because the only positive divisors of
p are 1 and p. Since p? has divisors 1, p, and p?, then d(p?) = 3.

* Exercise 2. Whatis d(p®)? Generalize to d(p™),n =4,5, . . . .

If p+#+ g, then pg has divisors 1, p, g, and pg, so d(pg) =4. (In
this section, as elsewhere, p and g will stand for primes.) Similarly,
the divisors of p%q are 1, p, p?, q. pq, and p?%q, so d(p3*q) = 6.

* Exercise 3. What is d(p°q)? What is d(p"q) for any positive n?

After Exercises 2 and 3, you may have guessed

Theorem 1. If p,®p,® - - - px®* is the prime-power decomposition of n,
then "

d(n) =d(p;*)d(ps*) - -~ d(pi*).

Proof. Let D denote the set of numbers

(0 pilpa’ i, 0=fi=e.

We claim that D is exactly the set of divisors of n. First, we note
that every number in the set is a divisor of n, because we can find
for each number in (1) an integer whose product with the number is
n; namely,

plel_f|pie:_f'_r .. ‘pke,‘—fk.

Second, suppose that d is a divisor of n. If p]d, then pln, so each,
prime in the prime-power decomposition of d must appear in the
prime-power decomposition of n. Thus

d =p/pd- - - pids,
where some Xor all) of the exponents may be 0. Moreover, no
exponent f; is larger than e;. (If it were, we would have a situation
in which p{‘]d and d|n, which implies p,-j‘lrz. This is impossible if
fi>e;.) Thus every divisor of n is a member of the set D. Thus D is

identical with the set of divisors of n. Each f; in (1) may take on
e; + 1 values. Thus there are

e+ D+ Dles+ D - - - (e + 1)
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numbers in D, and because of the unique factorization theorem, they
are all different. Since d(p™) =n + 1, this proves the theorem. For
example, from 24 = 2% - 3 we get d(24) =d(2®)d(3)=4 -2 =8.

* Exercise 4. Calculate d(240).

Now we will get a formula for o(n).

* Exercise 5. Verify that the following table is correct as far as it goes,
and complete it.

n 1 2

a(n) 1 3

6 7 8 9 10 11 12 13 14

3 435
4 7 6 12 8 15
As with d(n), some special cases are easy. For example, o(p) =

p + 1 for all primes p. Furthermore, the divisors of p? are 1, p, and
p? soo(p?)=1+p +p

* Exercise 6. What is o(p®)? o(pg), where p and g are different primes?
Exercise 7. Show that g(2*) = 2**! — 1.
* Exercise-8, What is o(p™),n=1;2, . . . ?

Let us calculate o(p°q”), where p and g are different primes, and
see if it suggests a general result. The divisors of pég are

1 p p* e ps,
q pq pq o peg,
q?. pqz p2q2 PN peqz’
qf qu pzqf P peqf_
If we add across each row, we get
opg)=0+p+ - - +p)+ql+p+ - +p°
+q2(1+p+ PN +pe)+ ce
+q' 0l +p+ - +p9
=(l+g+ - +g)A+p+ - +p9)=0(@)o@).

What is true for the product of two prime powers is true in general:
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Theorem 2. If p,®p2® - - - px% is the prime-power decomposition of r,
then

an) = a(p,®o(p.™) - - o(px®).
Proof. We will use mathematical induction. The theorem is true for

k =1 and, as we have just seen, for k = 2. Suppose that it is true
for k =r. We will show that this implies that it is true fork =r + 1. Let

: €y — &
B =D1%pe% - - PPt = Nppys oo

To simplify the notation, let us write n = Np¢. Let 1, d;, . . - , d,
be the divisors of N. Since (N, p) = 1, all of the divisors of n are

1 d, d, R

p dp dop - - dp

pe dlpe dgpa S dtpe

Summing, we get

O'(n)=(l+d1+dg+ ot +dg)(l+p+ Tt +pe)
= a(N)a(p®).

But from the induction assumption,
aN) = a(ps®)a(p:5) - - - o(pe),

and the last two equations complete the proof.

For example, from 24 = 23 - 3 we get

0c(24) =0(2®c(B)=(1+2 +4 + 8)(1 + 3) =60.

* Exercise 9. Calculate ¢(240).

Both d and o are members of an important class of number-theoretic
functions: the multiplicative functions. We will now define this term,
verify that d and o are multiplicative functions, and explain why the
idea is important. A function f, defined for the positive integers, is
said to be multiplicative if and only if

(m, n)=1 implies  f(mn) =f(m)f(n). A,
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A simple example of a multiplicative function is given by f(n) =n.
Anotheris g,.where g(n) is the product of the prime divisors of n.

Theorem 3. d is multiplicative.

Proof. Let m and n be relatively prime. Then, no prime that divides
m can divide n, and vice versa. Thus if

m = p&ipe® - - - py® and =qlqd - - - qF

are the prime-power decompositions of m and n, then no g is a p
and no p is a g, and the prime-power decomposition of mn is given by

mn = pEp.® - - - pesgfiat - gt

Applying Theorem 1, we have

d(mn) = d(p,*)d(p,*) - - - d(pe*)d(q)d(qs?) - - - d(q,")
=d(p,ops% - - - pe®)d(q gt - - - q/F) = dm)d(n).

Theorem 4. o is multiplicative.

Proof. The pfoof is exactly the same as the proof of Theorem 3,
with d replaced by o and ‘‘Theorem 1’° by ‘‘Theorem 2.”’

The reason multiplicative functions are important is that if we know
the value of a multiplicative function f for all prime-powers, then we
can find the value of f for all positive integers. To see this, we note

Theorem 5. If f is a multiplicative function and the prime-power
decomposition of n is p,ep.€: - - - p &, then

F@) =f@ENfD3) - - f(prt)-

Proof. The proof is by induction on k. The theorem is trivially true
for k = 1. Suppose it is true for &k = r. Because

Pops® - - P pra™) = 1,
we have, from the definition of a multiplicative function,

FUPEPS ~ + PrIPena®™) = FPs% PPy,
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From the induction.assumption, the first factor is

an

f(Popes - - - p&) = f(p)f (pe%) - - - f(p,®),

d this, together with the preceding equation, completes the induction.

For an example, suppose that f(p¢) =ep®~! for all primes p and all e,
e = 1. The first few values of f are

n 23 4567 89 10 11 12
fm) 1 1 4111 12 6 1 1 4

f(3141) = f(32 - 349) = f(3*)f(349) =6 - 1 =6,

and we can calculate f(n) for any » in a similar manner,

* Exercise 10. Compute f(n) forn =13,14, . . . , 24.

We will apply Theorem 5 of this section in Section 9 to get a

formulaforanimportant number-theoretic function, Euler’s ¢-function.

Problems

* 11.
12.
13.
14.

T 15.

O 00 NN D L AW

. Calculate d (42), o(42), d(420), and o(420).

Calculate d(540), o(540), d (5400), and o(5400).

. Calculate d and o of 10115=5-7- 172 and 100115 = 5 - 20023.

. Calculate d and o of 10116 = 22 - 32 - 281 and 100116 = 22 - 3% - 103.
. Show that g(n) is odd if » is a power of two.

. Prove that if f(#) is multiplicative, then so is f(n)/n.

What is the smallest integer » such that d (n) = 8? Such that d(n) = 10?

. Does d(n) = k have a solution n for each k?

. In 1644, Mersenne asked for a number with 60 divisors. Find one smalier
than 10,000.

. Find infinitely many n such that d(n) = 60.

If p is an odd prime, for whichk is 1 +p + - - - + p* 0dd?

For which »n is a(n) odd?

If n is a square, show that d () is odd.

If d(n) is odd, show that n is a square.

Observe that 1+ 1/3=4/3; 1 + 12+ 1/4=7/4; 1+ 1/5=6/5; 1+ 12+
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13+ 1/6 =15/6;1 + 1/7=8/7,and 1 + 1/2 + 1/4 + 1/8 = 15/8. Guess and
prove a theorem.

16. Find infinitely many n such that o(n) =< o(n — 1).
*t 17. ¥ N is odd, how many solutions does x? — y2 = N have?

18. Develop a formula for o,(), the sum of the squares of the positive divisors
of n.

t 19. Guess a formula for
ouln) = 2 d*,
. din
where k is a positive integer.

20. Show that the product of the positive divisors of n is n?’2,
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Perfect Numbers

Numbers are fascinating. At least, they have always fascinated some
people, from the time of the start of mathematics as a deductive art
some 2600 years ago until today. The ancient Greek mathematicians
mixed number theory with mysticism, and numbers could be male or
female, square or triangular, abundant or deficient, and they took on
nonnumerical properties. For example, 5 was the number of marriage
because it was the sum of the smallest male and female numbers
greater than 1: 5 =2 + 3. Number mysticism has never disappeared,
and though today it takes forms different from the past, it is still with
us, flourishing for the same reasons as astrology.

A number is called perfect if and only if it is equal to the sum of its
positive divisors, excluding itself. For example, 6 is perfect, because
6 =1+2+ 3. Sois 28 perfect,because 28 =1+ 2 + 4 + 7 + 14. But 18
is not perfect, because the sum of its positive divisors, excluding itself,
is 1+2+3+6+9=21. We study perfect numbers not for mystical
reasons, but because they provide practice with the o-function and
because Euler proved a satisfying theorem that allows us to determine
all even perfect numbers. Long before Euler, Euclid found some per-
fect numbers; we will follow in his footsteps.

In symbols, the sum of the positive divisors of n, excluding itself, is

57
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o(n) — n. Hence a number is perfect if and only if o(n) = 2n. To find
solutions to this equation, we will need to use a result proved in Section
7—namely, that o is a multiplicative function, or

1) if (m,n=1, then a(mn) = ao(m)o(n).

With its aid, we can prove
Theorem 1 (Euclid). 1f 2¥ — 1 is prime, then 25-!(2% — 1) is perfect.

Proof. Let n =2¥"'(2*¥ — 1). Because 2% — 1 is prime, we know that
o(2* — 1) = 2%. Then, noting that 2%~! and 2* — 1 are relatively prime
and applying (1), we have

o) = o(2'(2* - 1)) = (¥ o2k - 1) = 2k - 1) - 2 =2n.

Thus n is perfect.

So, every time we find a k such that 2* — 1 is prime, we can construct
a perfect number. We do not have to look at all values of k, because if k
is composite, so is 28 — 1: if k = ab, then

2k 1 =2e _ 1 = (20 — 1)(2a(b—1) 4+ 2a0-2) 4 ... 4 1)

Thus 2% — 1 canbe prime only when & is prime. Replacing £ with p, the
first few such numbers are

p 23 5 7 11 13
2?—1] 3 7 31 127 2047 8191

and all of these except 2047 = 23 - 89 are prime. Thus we have five
perfect numbers:
222 —-1) =6,
2228 — 1) =28,
2425 — 1) = 496,
2627 — 1) = 8128,
212(213 — 1) = 33550336.

An example of a larger perfect number is
191561942608236107294793378084303638130993721548169216.

Now we will show that the numbers 27~!(2? — 1) with p and 27 — 1
prime are the only even perfect numbers.
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Theorem 2 (Euler). If n is an even perfect number, then
n =212 - 1)

for some primé p, and 2” — 1 is also prime.

Proof. 1fn is an even perfect number, then n = 2°m, where m is odd and
e = 1. Since o(m) >m, we can write o(m) =m + s, with s > 0. Then
2n = o(n) becomes

26ty = (267 — 1)m + 5) =2 'm —m + (261! — 1)s.
Thus
(2) m = (2" - s,

which says thats is a divisor of m ands <m.Buto(n) =m + s;thussis
the sum of all the divisors of m that are less thanm. Thatis, s is the sum
of a group of numbers that includes s. This is possible only if the group
consists of one number alone. Therefore, the set of divisors of m
smaller than m must contain only one element, and that element must
be 1. Thatis, s = 1, and hence m = 2¢*! — 1 is a prime.

We repeat the argument, because it is slippery. Let the divisors of m
be

1,dy, ds, . . . ,dy, m.
Then o(n) =m + s, or
s=1+d, +ds+ - - - +dp.
Buts is a divisor ofm and s <m, sos equals one of 1,d,, . . . ,d;. The

only way that can be possible is if s = 1.

We have shown that s = 1. Thus o(m) =m + s =m + 1. This says
that m is prime. From (2), m = 2¢*! — 1. The only numbers of this form
that can be prime are those with e + 1 prime. Hence m =27 — 1 for
some prime p, and this completes the proof.

Thus the even perfect numbers determined in Theorem 1 are the only
even perfect numbers. As for odd perfect numbers, no one knows if
there are any, and no one has proved that none can exist. It is known
that if there is an odd perfect number, then it is quite large: it must be
greater than 1038, and it must satisfy many other conditions. For exam-
ple, if p;, p2, . . ., p are the prime factors of an odd perfect number,
then 1/p; + 1/p, + - - - + 1/p; > (150/151)1n 2. But no combination of
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conditions has so far served to show that there are no odd perfect
numbers: it may be that there is one, but so huge that it is out of the
range of human computation.

The problem of finding even perfect numbers is, after Theorem 2, the
same as the problem of determining primes p such that 2? — 1 is also
prime. Primes of the form 27 — 1 are called Mersenne primes. In the
seventeenth century, Mersenne, a lover of mathematics, claimed that
2P — 1 was prime for

k=2,3,5,7,13,17, 31, 67, 127, 257,

and for no other primes less than 257. His guess was not accurate: he
erred in including 67 and 257, for

257 — 1 =193707721 - 761838257287,

and 2?57 — 1 is also composite. He further erred in excluding 19, 61, 89,
and 107. But let us not think harshly of Mersenne: in the seventeenth
century, there were no mathematical journals to announce new dis-
coveries; instead, almost everyone wrote to Mersenne, and Mersenne
wrote to almost everyone else, enclosing the latest mathematical news.
He thus spread the results of Fermat, for one, and sped the develop-
ment of mathematics; it is fitting that he have a set of primes named
after him. The complete list of currently known primes p such that
2? — 1 is prime is

2,3,5,7,13,17, 19, 31, 61, 89, 107, 127, 521, 607, 1279,
2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937,

and to each of these there corresponds an even perfect number: 24 in
all. The first twelve were discovered before the invention of high-speed
computers; the later ones are so enormous as to be beyond the reach of
hand computation. The search for Mersenne primes has gone on (the
last one was announced in 1971), in the hope of seeing some sort of
pattern in the primes p, so that theorems could be guessed and maybe
proved. Some conjectures have been advanced, but without any indica-
tion as to how to go about proving them, and no important theorems
have been proved. It is not even known if there are infinitely many such
primes.

To close the section, we will mention another kind of number that
arose from number mysticism: amicable numbers. Consider 220 and
284. Since 220 =25 - 5- 11, it follows that
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0(220) — 220 = 0 (2¥)0(5)a(11) =220 =7 - 6- 12 — 220
= 504 — 220 = 284. '

And since 284 =22- 71, we have

0(284) — 284 = 0 (2*)a(71) — 284 =7 - 72 — 284
= 504 — 284 = 220.

So, in some sense, 220 and 284 go together. In general, we say that m
and n are amicable (or are an amicable pair) if and only if

om)—m=n and on) —n=m.
Equivalently, we could say that 1 and n are amicable if and only if

o(m) =an)=m +n.
Exercise 1. Verify that 1184 and 1210 are amicable.

Number mystics think that if one person carries a talisman of some
sort containing the number 220, and another person has one with 284,
they will be favorably disposed to each other. Numbers undeniably
have power: it might be worth a try. The amicable pair in Exercise 1
was first discovered as late as 1866, Euler found many such pairs, and
long lists of them exist. Besides those already mentioned, the amicable
pairs less than 10,000 are 2620, 2924; 5020, 5564; and 6232, 6368. There
are as yet no general theorems on amicable numbers as beautiful as
Euclid’s and Euler’s theorems on perfect numbers. Perhaps they re-
main to be discovered.

In the problems, abundant, deficient, and triangular numbeérs appear.
An integern is abundant if and only if o(n) — n > n, and it is deficient if
and only if o(n) — n <n. Triangular numbers have the formn@ + 1)/2.

Problems

1. Verify that 2620, 2924 and 17296, 18416 are amicable pairs. (The latter pair,
discovered by Fermat, was the second pair found. Note that
17296 = 2¢ - 23 - 47 and 18416 = 24 - 1151.)

2. It was long thought that even perfect numbers ended alternately in 6 and 8.
Show that this is wrong by verifying that the perfect numbers correspond-
ing to the primes 2 — 1 and 2" — 1 both end in 6.

# 3. Classify the integers 2, 3, . . ., 21 as abundant, deficient, or perfect.
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4. Classify the integers 402, 403, . . ., 421 as abundant, deficient, or perfect.
5. If a(n) = kn, then n is called a k-perfect number . Verify that 672 is 3-perfect

and 2,178,540 =22 -32-5-7%2-13 - 19 is 4-perfect.

6. Show that no number of the form 223? is 3-perfect.

7. Let us say that n is superperfect if and only if o(c(n)) = 2n. Show that if

10.

I1.

12.
13.
14,

15.

n = 2% and 25! — 1 is prime, then n is superperfect.

. It waslongthoughtthat every abundant number was even. Show that 945 is

abundant, and find another abundant number of the form 3¢ -5- 7.

. In 1575, it was observed that every even perfect number is a triangular

number. Show that this is so.
In 1652, it was observed that

6=1+2+3,
28=1+2+3+4+5+6+17,
496 =1+2+3+---+3l.

Can this go on?

Let
p=3-2-1,
g=3-2¢1-1,
r=32 211,

where e is a positive integer. If p, g, and r are all prime, show that
2¢pg and 2¢r are amicable. (Only for e =2, 4, 7 are p, g, and r all
prime for e < 200.)

Show that if p > 3 and 2p + 1 is prime, then 2p (2p + 1) is deficient.
Show that all even perfect numbers end in 6 or 8.

If n is an even perfect number and n > 6, show that the sum ofits digits is
congruent to 1 (mod 9).

If p is odd, show that 2*~'2? — 1) = 1 + 9p(p — 1)/2 (mod 81).
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FEuler’s Theorem and Function

Fermat’s Theorem states that if p is prime, then
(@,p)=1 implies a*'= 1 (mod p).

It is natural to ask if there is a generalization of this to any positive
integer: Given any integer m, is there a number f(n) such that g = 1
(mod m)? We note that this cannot hold unless (a, m) = 1, forif a andm
have a common divisor greater than 1, then m l(a" — 1) is impossible
forany k > 0. Let us look at tables of powers ofa (mod m), where a and
m are relatively prime, form = 6, 9, and 10:

m=6 m=9 m=10
a a? a a* a® a* a® af a a* & at
1 1 1 1 1 1 1 1 1 1 1 1
5 1 2 4 8 7 5 1 3 9 7 1
4 7 1 4 7 1 7 9 3 1
5 7 8 4 2 1 9 1 9 1
7 4 1 7 4 1
8 1 8 1 8 1

63
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Evidently,

a?=1 (mod 6) if (a 6)=1,
a®=1 (mod 9) if @ 9 =1,
a* =1 (mod 10) if (@, 10)=1,

so the number f(m) exists form = 6, 9, and 10.

Exercise 1. Show thata®= 1 (mod 14)for all a relatively prime to 14.

If your eye is very sharp indeed, you might have noticed that f(6) = 2
and that there are two positive integers less than 6 and relatively prime
to 6; f(9) = 6, and there are six positive integers less than 9 and rela-
tively prime to it; f(10) = 4, and there are four positive integers less
than 10 and relatively prime to it; and a similar statement holds for 14.

Let us introduce some notation. If m is a positive integer, let ¢(n)
denote the number of positive integers less than or equal to m and
relatively prime to m. We will call ¢ Euler’s ¢-function. With this
notation, ¢(6) = 2, ¢(9) = 6, and ¢(10) = 4. If you worked more exam-
ples you would almost certainly guess that the following theorem, first
proved by Euler, is true:

Theorem 1. Suppose that m = 1 and (@, m) = 1. Then a*™ = 1 (mod
m).

We know that the theorem is true in the special case whenm =p, a
prime. Every positive integer less than p is relatively prime to it, so
¢(p)=p — 1, and it is Fermat’s Theorem that a*~' = 1 (mod p) when
(a, p) = 1. The theorem is also true if m = 1, since the definition of the
¢-function gives ¢(1) = 1.

In this section we will prove Theorem 1, -and we will develop a
formula for calculating ¢(n) from the prime-power decomposition of rz.

The idea used to prove Fermat’s Theorem is that if (a, p) =1,

then the least residues (mod p) of a, 2a, . . ., (p — 1)a are a per-
mutation of 1, 2, . . . , p — 1. This is also the key to Euler’s gen-
eralization:

Lemma 1. If (a, m)=1andry, re, . . ., Feum are the positive integers

less than m and relatively prime to m, then the least residues (mod m)
of
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(1) ary, ars, .« - s AF tm)
are a permutation of

FisTas « « 5 Foum)-

For example, if m = 10 and a = 3, then the least residues of
3-1, 3-3, 3-7, 3-9
are
3, 9 1, 7,

a permutation of {1, 3, 7, 9}.

Exercise 2. Verify that Lemma 1 is true if m = 14 and a = S.

Proof of Lemma 1. Since there are exactly ¢(n) numbers in the set (1),
to prove that their least residues are a permutation of the ¢(n) numbers
Fis F2y - - - 5 Py WE have to show that they are all different and that
they are all relatively prime to m. To show that they are all different,
suppose that

ar; = ar; (mod m)

for somei andj(l =i = ¢(m),1 =j = ¢$(m)). Since (a, m) = 1, we can
cancel a from both sides of the congruence to get r; = r; (modm). Since
r; and r; are least residues (mod m), it follows that r; = r;. Hence, r; # r;
implies ar; ¥ ar;(mod m), and so the numbers in (1) are all different.

To prove that all the numbers in (1) are relatively prime to m,
suppose that p is a prime common divisor of ar; and m for some i,
1 =i < ¢(m). Since p is prime, either p|a or p |r;. Thus either p is a
common divisor of ¢ and m or of r; and m. But (a, m) = (r;,m) =1, so
both cases are impossible. Hence (ar;, m) = 1foreachi,i=1,2,. . .,
dim).

The proof of Euler’'s Theorem proceeds as does the proof of
Fermat’s Theorem:

Proof of Theorem 1. From Lemma 1 we know that

FiFg © o Femy = (ar Mar) © - - (areom)

=a®™(ry - - - Feem) (mod m).
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Since each of ry, ra, . . ., Feumy is relatively prime to m, it follows that
their product is, also; thus that factor may be canceled in the last
congruence, and we get

1= g*™ (mod m).

The rest of the section will be mainly devoted to the properties of ¢ ;
our goal is to find a way of calculating ¢(n) by some method other than
actually counting all the positive integers less than n and relatively
prime to it.

Exercise 3. Verify that the entries in the following table are correct.

n 23 456738910
o) 11 2 2 4 2 6 4 6 4

Exercise 4. Verify that 3*® = 1 (mod 8).

* Exercise 5. Which positive integers are less than 4 and relatively prime
to it? What is the answer if 4 is replaced by 8? By 16? Can you induce a
formula for ¢(2*),n =1,2,. . .?

In general, it is not hard to see what ¢(p™) is, wherep is a prime and n
is a positive integer.

Lemma 2. ¢$(p™) =p" '(p — 1) for all positive integers n.

Proof. The positive integers less than or equal to p* which are not
relatively prime to p* are exactly the multiples of p:

1-‘p,2:p,3:p,...,0@E Hp,

and there are p"~! of them. Since there arein all p® positive integers less
than or equal to p*, we have

d(p") =p" —p*t=p" ' —1).

For example, the positive integers less than or equal to 27 which are
not relatively prime to 27 are 3, 6,9, 12, 15, 18, 21, 24, and 27; nine of
them, so $(27) =27-9=93 - 1).
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Exercise 6. Verify that the formula is correct forp = 5 and n = 2.

Thus we know ¢ for all prime-powers. If we knew that ¢ was a
multiplicative function, then we could apply Theorem 5 of Section 7 to
get a formula for ¢(n). That ¢ is in fact multiplicative we will now
demonstrate in a theorem whose proof, in common with many other
proofs in number theory, is neither long, technical, nor complicated; it
is just hard. First we need an easy lemma:

Lemma 3. If (a, m) =1 and a = b (mod m), then (b, m) = 1.

Proof. This follows from the fact that b =a + km from some k.

Corollary. 1f the least residues (mod m) of
(2) rl’r27"‘3rm

are a permutation of 0, 1, . . . ,m — 1, then (2) contains exactly ¢(m)
elements relatively prime to m.
We can now prove

Theorem 2. ¢ is multiplicative.

Proof. Suppose that (n, n) = 1 and write the numbers from 1 to mn as
follows:

1 m+1 2m+1 ... (m—Dm+1
2 m+2 2m+2 ... m—-Dm+2
m 2m 3n mn

Suppose that 7, r) = d and d > 1. Then we claim that no element in the
rth row of the array:

r m+r 2m+r ... km+r ... (n—1Dm+r

is relatively prime to mn. This is so because if d|m and d|r, then
d | (km —r) for any k. So, if we are looking for numbers that are rela-
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tively prime to mn, we will not find any except in those rows whose first
element is relatively prime to m.

* Exercise 7. How many such rows are there?

For an example, let us take n = 5 and m = 6. Then the array is

1 7 13 19 25
2 8 14 20 26
3 9 15 21 27
4 10 16 22 28
S 11 17 23 29
6 12 18 24 30

No element in the second, third, fourth, or sixth row is relatively prime
to mn = 30, because the first element in each of those rows is not
relatively prime to m = 6. All numbers relatively prime to 30 are found
in the two remaining rows,

1 7 13 19 25

3
G) S 11 17 23 29

Suppose we can show that there are exactly ¢(n) numbers relatively
prime to mn in each of the rows that have first elements relatively
prime to m. Since there are ¢(n) such rows, it will follow that the
number of integers in the whole array that are relatively prime to mn is
¢(n)p(m): that is, ¢(mn) = ¢p(m)p(n), and the theorem will be proved.
But the numbers in the » th row (where r and m are relatively prime) are

4) r,m+r,2m+r, .., (n—1Dm+r,
and we claim that their least residues (mod ) are a permutation of
5) 0,1,2,...,@n—1).

To verify this claim, all we have to do is show that no two of the
numbers in (4) are congruent (mod n), because (4) contains n elements,
Jjust as (5) does. This is easy: suppose that

km + r = jm + r (mod n),

with0 = k <nand 0 = j <n.Thenkm = jm (modn), and since (m ,n) =
1, we have k = j (mod n). On account of the inequalities on k and j,
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it follows that k =j. Hence, if k #j, then km + r % jm + r (mod n), and
no two elements of (4) are congruent (mod 7).

In the example above, the least residues (mod 5) of the numbers in

(3) are

1 23 40

01 2 3 4
and each row contains ¢(5) = 4 numbers relatively prime to 30. Thus
8 = ¢(30) = p(6)¢(5).

By the Corollary to Lemma 3, we have that (4) contains exactly ¢(n)
elements relatively prime ton. But from Lemma 3, every element in the
rth row of the array is relatively prime to m. It follows that the r th row
of the array contains exactly ¢(n) elements telatively prime to mn. As
we noted before, this is enough to complete the proof.

We can now get a formula for ¢(n):

Theorem 3. 1If n has a prime-power decomposition given by
n=pitpes o pr®,
then
$(n) =p, a7 (py — Dpe" W p2 = D - - - pp®7Hpe — D).

Proof. Because ¢ is multiplicative, Theorem 5 of Section 7 applies
here to give

$(n) = PP1*)P(P2%) - -+ B(Pi®).

If we apply Lemma 2 to each term on the right, the theorem is proved.

The best way to calculate a value for ¢ is to use this multiplicative
property. For example, to find ¢(72), factor 72 into 23 - 32 and write
&(72) = p(23)p(3%) =22 -1 -3 -2 =24,

¥ Exercise 8. Calculate ¢(74), ¢(76), and ¢(78).

The formula of Theorem 3 can be written in another form, which is
neater and sometimes useful, though not for computation:
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Corollary. If n = p,%p;% - - - pp%, then
-5 (-5
— 1 — — 1—-—=) .. 1—-—=1-
) n( D Pz P

The proof of this corollary is left to the reader. We conclude with
a theorem we will need in the next section.

Exercise 9. Calculate > ¢(d)
din
(@) Forn =12, 13, 14, 15, and 16.
(b) Forn =2k k= 1.
(c) Forn =p*,k = 1and p an odd prime.

You should have guessed by now that the following theorem is true.

Theorem 4. If n = 1, then
b(d) =n.

dlr

Proof. It would be natural to try to apply the formula of Theorem 3
to get this result. This would be difficult; instead we use a clever idea
first thought of by Gauss. Consider the integers 1, 2, . . . , n. We
will put one of these integers in class C, if and only if its greatest
common divisor with n is d. For example, if » = 12, we have

Cc,={1,5,7,11}, C, =12, 10},
C3={3,9}, C4={4a8}9
Cs = {6}, C.o = {12}.

Exercise 10. What are the classes C, for n = 14?

We have m in Cy if and only if (m, n) = d. But (m, n) =d if and only
if (m/d, n/d) = 1. That is, an integer m is in class Cy if and only if
ml/d is relatively prime to n/d. The number of positive integers less
than or equal to n/d and relatively prime to n/d is ¢(n/d) by definition.
Thus, the number of elements in class Cy is ¢(n/d).

Exercise 11. Check that this is correct for n = 12 and n = 14.
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_ Since there is a class for each divisor of n, the total number of ele-
ments in all the classes Cy is

_ > d(n/d).

din

That is, n =Y, ¢(n/d). But Y, d(n/d) is the same as >, ¢(). For ex-
din

- dln din
ample, the positive divisors of 9 are 1, 3, and 9, s0 >, ¢(d) = é(1) +
di9
#(3) + (9) and D, p(nld) = $(9) + $(3) + ¢(1); the same terms in the
di9

opposite order. Hence n = 2 &(d), and the theorem is proved.
din

o Problems
— * 1. Calculate $(42), $(420), and $(4200).
_ 2. Calculate ¢(54), $(540), and ¢(5400).

* 3. Calculate ¢ of 10115=5-7-17% and 100115 = 5 - 20023.
o 4. Calculate ¢ of 10116 =22 - 32281 and 100116 = 2% -3%-103.
- * 5. Calculate a® (mod 15) fora=1,2, . . ., 14.
— 6. Calculate a® (mod 16) fora=1,2,. . ., 15.
o 7. Show that if »# is odd, then ¢(4n) =2 ¢(n).

8. Perfect numbers satisfy o(n) = 2n. Which n satisfy ¢(n) = 2n?

o T 9. 14+2=03/263), 1+3=@/2)p4), 1+2+3+4=(5)$S5), 1+5

— =(6/2)p6), 1 +2+3+4+5+6=(72)p(7),and1+3+5+7=
(8/2)$(8). Guess a theorem. '

10. Show that
> P - p)=3 dp).
N . P=X pP=Ex P=EX

o 11. Prove Lemma 3 by starting with the fact that there are integers» and s such
thatar + ms = 1.

- 12. If (a, m) = 1, show that any x such that

x = ca®™1 (mod m)

""" satisfies ax = ¢ (mod m).

o 13. Letf(n)=(n + ¢(n))2. Show that f (f(n)) = p(n)if n =25 k =2,3,. . . .
14. Find four solutions of ¢(n) = 16.

*+ 15. Find all solutions of ¢(n) =4 and prove that there are no more.

16. Show that ¢(mn) > ¢d(m)d(n) if m and n have a common factor greater than
. 1. : . :
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T 17. Show that (n, n) = 2 implies ¢(mn) = 2 $(m)P(n).
18. Show that ¢(n) = n/2 if and only if n = 2* for some positive integer k.

t 19. Show that if n — 1 and n + 1 are both primes and n > 4, then ¢(n) < n/3.
20. Show that ¢(n) = 14 is impossible.
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Primitive Roots

In Theorem 1 of the last section, we saw that if (a, m) = 1, then there is
apositive integert such that ¢! = 1 (modm), namely ¢t = ¢@n). This can
be proved independently of that theorem as follows. If (a, m) = 1, then
the least residues (mod m) of a, a2, a®, . . . are all relatively prime to
m. There are ¢(m) least residues (mod m) that are relatively prime tom
and infinitely many powers of a : it follows that there are positive inte-
gersj and k such that j# k and a? = a* (mod m). Since (a, m) = 1, the
smaller power of a in the last congruence may he canceled, and we
have either

a’* =1 (mod m) or a* 3= 1 (mod m).

So, if (a, m) = 1, then there is a positive integer ¢ such thata‘= 1 (mod
m). In fact there are infinitely many, since it follows from g ¢™ = 1
(mod m) for (a, m) = 1 that for any positive integer k,

at+k®(m) =g t(ak)dh(m) = at = 1 (mod m)'

The smallest such ¢ is important enough thatit has a name: if (a,m) = 1,
then the order ofa modulom is the smallest positive integer ¢ such that
at= 1 (mod m).

73
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a" (mod 11)

a a? ad at a® a a’ a? a? a'®
1 1 1 1 1 1 1 1 1 1
2 4 8 5 10 9 7 3 6 1
3 9 5 4 1 3 9 5 4 1
4 5 9 3 1 4 5 9 3 1
5 3 4 9 1 5 3 4 9 1
6 3 7 9 10 5 8 4 2 1
7 5 2 3 10 4 6 9 8 1
8 9 6 4 10 3 2 5 7 1
9 4 3 5 1 9 4 3 5 1
10 1 10 1 10 1 10 1 10 1

For example, from the table above,

2, 6, 7, and 8 have order 10 (mod il),
3,4,5,and 9 have order S,

10 has order 2, and

1 has order 1.

When this idea was introduced by Gauss, he called ¢ the exponent to
which a belongs (mod m), and his long phrase is sometimes used in
place of our shorter one.

Exercise 1. What are the orders of 3, 5, and 7, modulo 8?

Note that in the above example, the orders 1, 2, 5, and 10 are divisors
of ¢(11) = 10. This is no coincidence, as we show in Theorem 2. First
we show that the set of integers n for whicha™ = 1 (mod m) is precisely
the set of the multiples of the order of a (mod m).

Theorem 1. Suppose that (a, m) =1 and a has order ¢ (mod m). Then
a™= 1 (mod m) if and only if » is a multiple of ¢.

Proof. Suppose that n = tq for some integer g. Thena®= g = (g )=
19= 1 (mod m) because g’ = 1 (mod m).

Conversely, suppose that a"= 1 (mod m). Since ¢ is the smallest
positive integer such that a’= 1 (mod m), we have n =t so we can
divide n by ¢ to getn =tq + » withg =-1and 0 < r <¢t. Thus

l=g"=qa'"" = (@)% " = 1%" = a” (mod m).
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Since ¢ is the smallest positive integer such thata’= 1 (modm),a” = 1
(mod m) with 0 = r <t is possible only if » = 0. Thus n =1g and the
theorem is proved.

This gives

Theorem 2. If (a, m) = 1 and a has order ¢ (mod m), then t|¢p(n).

Proof. From Euler’s extension of Fermat’s Theorem we know that
a®™ = 1 (mod m). From Theorem 1, ¢(m) is a multiple of ¢, which is
what we wanted to prove.

Exercise 2. What order can an integer have (mod 9)? Find an example
of each.

As an example of an application of this idea, we prove

Theorem 3. If p and g are odd primes and g |a" — 1, then eitherg \a -1
or g = 2kp + 1 for some integer k.

Proof. Sinceq |a? — 1, we have a” = 1(modq). So, by Theorem 1, the
order of @ (mod g) is a divisor of p. That is, a has order 1 or p. If the
order ofa is 1, thena! = 1 (modg), sog |a — 1. If on the other hand the
order of a is p, then by Theorem 2, p |¢(q); that is, p|g — 1. So,
g — 1 =rp for some integer r. Since p and g are odd, r must be even,
and this completes the proof.

Corollary. Any divisor of 2 — 1 is of the form 2kp + 1.

Exercise 3. Using the corollary, what is the smallest possible prime
divisor of 2® — 1?

The next theorem is essentially a corollary to Theorem 1, but it is
worth stating explicitly.

Theorem 4. If the order of ¢ (mod m) is ¢, then a” = @°* (mod m) if and
only if r = s (mod 1).
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Proof. Suppose that a”™ = a® (mod m). We can suppose thatr =-s with
no loss of generality. Thusa™* = 1 (modm), and from Theorem1,r —s
is a multiple of ¢. That, by definition, says that+ = s (mod ¢).

To prove the converse, suppose that »r =s (mod ¢). Then r = s + k¢
for some integer £, and

a’ = qstkt = as(at)k = g° (modm)

because a! = 1 (mod m).

If a is a least residue and the order of a (mod m) is ¢ (), then we will
say that a is a primitive root of m. Primitive roots, and numbers that
have them, are of special interest because of the following property:

Theorem 5. If g is a primitive root of m, then the least residues, modulo
m, of

2 ()
£,8% . . "gdbm

are a permutation of the ¢(m) positive integers less than m and rela-
tively prime to it.

Proof. Since (g, m) = 1, each power of g is relatively prime to m.
Moreover, no two powers have the same least residue, because if
g'= g¥ (mod m), then from Theorem 4, j = k (mod ¢(m)). Ifj # k (mod
$(m)), g # g* (mod m).

For example, 2 is a primitive root of 9, and the powers
2,2%,23,24,25, 28
are, (mod 9),

2,4,8,7,5, 1.
Exercise 4. Show that 3 is a primitive root of 7.
* Exercise 5. Find, by trial, a primitive root of 10.
Not every integer has primitive roots—for example, 8 does not, as

we saw in Exercise 1. We will now set out to show that each prime has
a primitive root. The proof is not easy, requires a good deal of prepara-
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tion (Lemmas 1 through 3), and because it is an existence proof; it does
not show how to find the primitive root. For these reasons, you do not
lose too much if you take the result on faith.

If a has order ¢ (mod m), then any power of ¢ will have an order no
larger than ¢, because for any k, (@*)! = (a‘)* = 1 (mod m). From the
table of a* (mod 11) we can see that 2 is a primitive root of 11, and
among its powers, 23, 27, and 2° have order 10; 22, 2¢, 2%, and 2% have
order 5; and 2° has order 2. Lemma 1 tells which powers of a have the
same order as a.

Lemma 1. Suppose that a has order t (mod m). Then a* has order # (mod
m) if and only if (k,7) = 1.

Proof. Suppose that (k,1) = 1, and denote the order ofa* by s. We have
1= (a@")* = (a*)' (mod m),
so from Theorem 1, s |t. Because s is the order of a*,
(@*y = a** =1 (mod m),

so from Theorem 1 again, t |ks. Since (k,t) = 1, it follows that ¢ |s. This
fact, together with the fact that s |z, implies s =1.

To prove the converse, suppose that a and a* have order ¢ and that
(k, ) =r. Then

l=al= (at)klr = (ak)tlr (mod m);

because ¢ is the order of a*, Theorem 1 says that t/- is a multiple of z.
This implies that r = 1.

For example, 2 has order 10 (mod 11), and the lemma says that 2* has
order 10 if and only if (k, 10) = 1; thatis, fork =1, 3, 7, and 9. The
other primitive roots of 11 are thus 23, 27, and 2°, or 8, 7, and 6. Thus, if
we can find one primitive root of a prime, we can find them all. This is
worth stating as a

Corollary. Suppose that g is a primitive root of p. Then the least residue
of g* is a primitive root of p if and only if (k,p — 1) = 1.

Proof. Apply Lemma 1 witht =p — 1.
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We nowneed alemma about the solutions of polynomial congruences
(mod p). Though it is an important theorem, we do not use it elsewhere.

Lemma 2. If f is a polynomial of degree n, then
() f(x)= 0 (mod p)

has at most n solutions.

Proof. Let
f)=ax*+a,x" '+ - - - +aq
have degree n; that is, a, # 0 (mod p). We prove the lemma by induc-
tion. Forn =1,
a,x +ag= 0 (mod p)

has but one solution, since (a;, p) = 1. Suppose that the lemma is true
for polynomials of degree n — 1, and suppose that fhas degree n. Either
f(x)= 0(mod p) has no solutions or it has at least one. In the first case,
the lemma is true. In the second case, suppose thatr is a solution. That
is,f(*) = 0 (mod p), andr is a least residue (mod p). Then because x —r

is a factor of x! —r¢fort=0,1,. . ., n, we have
Sflo) = fix) - fr)
=a,x" —r")+ a1 ="+ - - - +a (e —r)

= (x —r)g) (mod p),

where g is a polynomial of degree n — 1. Suppose that s is also a
solution of (1). Thus

f()= (s —r)g(s) = 0 (mod p).
Because p is a prime it follows that
s=r (mod p) or g(s) = 0 (mod p);

from the induction assumption, the second congruence has at most
n — 1 solutions. Since the first congruence has just one solution, the
proof is complete.

Note that Lemma 2 is not true if the modulus is not a prime. For
example,

x2+x = 0(mod 6)

has solutions 0, 2, 3, and 5.
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Lemma 3. If d | p — 1, then x¢ = 1 (mod p) has exactly d solutions.

Proof. From Fermat’s Theorem, the congruence x?~* = 1 (mod p) has

exactly p — 1 solutions, namely 1,2, . . . ,p — 1. Moreover,
xﬁ—l — 1 —_ (xd — 1)(Xp—1—d +xp—172d+ e 4 1)
=(? = Dhtx).

From Lemma 2, we know that 4 (x) = 0 (mod p) has at mostp — 1 —d
solutions. Hence x?= 1 (mod p) has at least d solutions. Applying
Lemma 2 again, we see that it has exactly d solutions.

We are at last prepared to prove

Theorem 6. Every prime p has ¢(p — 1) primitive roots.

Proof. Theorem 2 says that each of the integers
) 1,2,...,p—-1

has an order that is a divisor of p — 1. For each divisorz of p — 1, let ys(z)
denote the number of integers in (2) that have order ¢. Restating what
we have just said:

Y w)=p—1.
tip—1
From Theorem 4 of Section 9, we have
3) > U= 60).
{p—1 tin—1

If we can show that Y(r) = ¢(¢) for each ¢, it will follow from (3) that
Y(t) = ¢(z) for each ¢. In particular, the number of primitive roots of p
will be yi(p — 1) = d(p — 1).

Choose some t. If y(t) = 0, then () < @(t) and we are done. If
Y(2) # 0, then there is an integer with ordert; call it a. The congruence

4) x'=1 (mod p)

has, according to Lemma 3, exactly ¢ solutions. Furthermore, (4) is
satisfied by the ¢ integers

(3) a, a ad ..., da,

and because no two of these have the same least residue (mod p), they
give all the solutions. From Lemma 1, the numbers in (5) that have
order ¢t are those powers a* with (k, t) = 1. But there are ¢() such
numbers k. Hence () = ¢(t) in this case. As noted above, this com-
pletes the proof.



80 Section 10

We have actually proved more than was stated in Theorem 6.
Although we will not use what we have proved, we have the

Corollary. If p is a prime and tl(p — 1), then the number of least
residues (mod p) with order ¢ is ¢(t).-

Exercise 6. Use the table of powers (mod 11) at the beginning of this
section to verify that the corollary is true for p = 11.

Theorem 6 does not actually help us to find a primitive root of a
prime. To find one, we may use tables or trial. Here is a table giving
the smallest positive primitive root, g,, for each prime p less than 114.

p | 2 3 5 711 1317 192329 31 37 41 43 47
s 1 2 2 3 2 2 3 2 5 2 3 2 6 3 5
p 5359 61 67 71 73 79 83 89 97 101 103 107 109 113
¢»| 2 2 2 2 7 5 3 235 2 5 2 6 3

No method is known for predicting what will be the smallest positive
primitive root of a given prime p, nor is there much known about the
distribution of the ¢(p — 1) primitive roots among the least residues
modulo p. For example, the primitive roots of 71 and 73 are

Primitive roots of 71 Primitive roots of 73
7 11 13 21 22 28 5 11 13 14 15 20
31 33 35 42 44 47 26 28 29 31 33 34
52 53 55 S6 59 61 39 40 42 44 45 47
62 63 65 67 68 69 53 S8 59 60 62 68

There are other numbers besides primes that have primitive roots. It
can be proved that the only positive integers with primitive roots are 1,
2,4, p¢, and 2p¢, where p is an odd prime and e is a positive integer.

Exercise 7. Which of the integers 2, 3, . . . ; 25 do not have primitive
roots? :

As an example of the application of primitive roots, we will use them
to prove part of Wilson’s Theorem quickly and elegantly. Let g be a
primitive root of the odd prime p. From Theorem S, we know that the
least residues (mod p) of g, g%, . . ., g?"! are a permutation of 1, 2,

., p — 1. Multiplying and using the fact that

1+2+34+---+@-D=(@ - p/2,
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we get

or

1-2---(p—1D=g-g*- - -g"! (mod p)

(p — 1)! = (gp)(P—l)IZ = g(p—l)ﬂ (mod p)_

But g2 satisfiesx? = 1 (mod p), and we know that g**~P2= 1 or —1
(mod p). But the first case is impossible, since g is a primitive root of p .
Thus (p — 1)! = —1 (mod p).

Problems
* 1. Find the orders of 1,2, . . ., 12 (mod 13).
2. Find the orders of 1, 2, . . ., 16 (mod 17).
* 3. One of the primitive roots of 19 is 2. Find all of the others.
4. One of the primitive roots of 23 is 5. Find all of the others.
* 5. What are the orders of 2, 4, 7, 8, 11, 13, and 14 (mod 15)? Does 15 have
primitive roots?
6. What are the orders of 3, 7, 9, 11, 13, 17, and 19 (mod 20)? Does 20 have
primitive roots?
* 7. Which integers have order 6 (mod 31)?
8. Which integers have order 6 (mod 37)?
9. Ifa, a# 1, has order 7 (mod p), show that
a'4+aq™2+ -+ + 1= 0 (mod p).
10. If g and h are primitive roots of an odd prime p, then g = A* (mod p) for
some integer k. Show that k& is odd.
T 11. Show that if g and 4 are primitive roots of an odd prime p, then the least
residue of gh is not a primitive root of p.
12. If g, h, and k are primitive roots of p, is the least residue of ghk always a
primitive root of p ?
T 13. Show that if a has order 3 (mod p), then a + 1 has order 6 (mod p).
14. If p and g are odd primes and q|a” + 1, show that either g|a +1 or
q =2kp + 1 for some integer k.
*T 15. Suppose that a has order 4 (mod p). What is the least residue of (a + 1)*
(mod p)?
16. Show that 131071 = 2" — 1 is prime.
 17. Show that (2" + 1)/3 is prime.
18. If g is a primitive root of p, show that two consecutive powers of g have
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consecutive least residues. That is, show that there exists & such that
gr¥t'= gk + 1 (mod p).

1t 19. If g is a primitive root of p, show that no three consecutive powers of g
have consecutive least residues. That is, show that gkt?= gk+! 4 | =
g* +2 (mod p) is impossible for any k.

20. (a) Show that if m is a number having primitive roots, then the product of
the positive integers less than or equal to mm and relatively prime to it is
congruent to —1 (mod m).

(b) Show that the result in (a) is not always true if 7z does not have primi-
tive roots.



Section

Quadratic Congruences

After studying linear congruences, it is natural to look at quadratic
congruences:

Ax? + Bx + C = 0 (mod m).
In this section we will restrict the modulus to an odd prime. We will
assume that A # 0 (mod p), because if A = 0 (mod p), then
(1 Ax? +Bx + C = 0 (mod p)

would be a linear congruence, not a quadratic congruence. We know
that there is an integer A’ such that AA’ = 1 (mod p). Hence (1) has the
same solutions as

2) x2+A'Bx + A'C = 0 (mod p).

Exercise 1. Convert 2x2 +3x + 1= 0 (mod 5) to a quadratic congru-
ence whose first coefficient is 1.

If A'B is even, we can complete the square in (2) to get

’ 2 ’ 2
(x+A—ZB) (A—zB) —A'C (mod p);

if A'B is odd, we can change it to p + A’B, which is even, and then

83
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complete the square. In either case, we have replaced (1) with an
equivalent congruence of the form

(3) y*=a (mod p);

thus, if we can solve this congruence, we can solve any quadratic
congruence (mod p). For example, to solve 3x% + 6x + 5= 0 (mod 7),
first multiply both sides of the congruence by 5 and reduce the coeffi-
cients (mod 7) to get x? + 2x +4= 0 (mod 7). Then complete the
square: x2+ 2x + 1= 4 (mod 7) or (x + 1)2= 4 (mod 7). Since y?>= 4
(mod 7) has the solutions 2 and 5, the original quadratic congruence has
solutions 1 and 4.

* Exercise 2. Change the quadratic in Exercise 1 to the form (3).

* Exercise 3 (optional). By inspection, find all the solutions of the con-
gruence in Exercise 2.

Such congruences do not always have solutions. For example,
modulo 5,

=0, [=4=1 ad 22=3

[

4,

s0 x2 = g (mod 5) has a solution fora = 0, 1, or 4 and no solution for
a = 2or 3. Wenote that x2 = 0 (mod p) has only the solution x = 0 (mod
p). We now show that if p,f’ a, then solutions of x? = g (mod p) come in
pairs. This should be no surprise: since r? = (—r)?, we have r2 = (—r)
(mod p), so if r is a solution of x2= a (mod p), then so is the least
residue (mod p) of —r. Thus if r is a solution, sois p —r.

Theorem 1. Suppose that p is an odd prime. If p[ a, thenx? = g (mod p)
has exactly two solutions or no solutions.

Proof. Suppose that the congruence has a solution, and call it ». Then
p —r is a solution too, and it is different fromr. (Forifr=p —r (modp),
then 2r = 0 (mod p); since (2, p) = 1, we get r = 0 (mod p), which is
impossible.) Let s be any solution. Then r?2 = s? (mod p), whence
D I(r ~s)r + s). Thus

pl(r-s) or pl(r+s).

In the first case, s = r (mod p). In the second case, s = p —r (mod p).
Since s, r, and p — r are all least residues, we have s =r orp —r; these
are thus the only solutions.
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This theorem is not true if the modulus is not prime. For example,
x2= 1 (mod 8) has four solutions, namely 1, 3, 5, and 7.

Exercise 4. If p > 3, what are the two solutions of x2 = 4 (mod p)?

It follows from Theorem 1 that if g is selected from the integers 1, 2,

., p — 1, then x?2 = g (mod p) will have two solutions for (p — 1)/2

values of ¢ and no solutions for the other (p — 1)¥2 values of a. For
example, if p = 11, then x? is one of the entries in the table

x 1 23 45 6 7 8 9 10
x2(mod11) | 1 4 9 5 3 3 5 9 4 1

since x2 = (p — x)? (mod p), the entries are symmetric about p/2 and the
same (p — 1)/2 least residues appear in each half. So, for those
(p — 1)/2 least residues, x? = g (mod p) has two solutions, and for the
other (p — 1)/2 least residues there are no solutions.

Exercise 5. For what values of a does x?=qa (mod 7) have two
solutions?

It would be nice to be able to tell the two groups apart. In this section
we will do this by deriving Euler’s Criterion:

Theorem 2. If p is an odd prime and p ,}’a, then x2 = ¢ (mod p) has a
solution or no solution depending on whether

a2 = ] or —1 (mod p).

First we introduce some new words.

Ifx2 = a (mod m) has a solution, then a is called a quadratic residue
(mod m).

If x2 = a (mod m) has no solution, then q is called a quadratic non-
residue (mod m).

There are also cubic residues, fourth-power residues, and so on, but
assuming there is no danger of confusion, we will omit the adjective
‘‘quadratic’’ and refer to residues and nonresidues for short.

Euler’s Criterion can be easily derived using primitive roots.

Proof of Theorem 2. Let g be a primitive root of the odd prime p. Then
a = g¥* (mod p) for some k. If k is even, then x> = g (mod p) has a
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solution, namely the least residue of g*2?; further, by Fermat’s
Theorem,

a® V2 = (gh)p-Diz = (gkiZYP-1 = | (mod p).
If k is odd, then
a® i = (gr-bitk = (~1)* = —1 (mod p),

and also x2 = g (mod p) has no solution: if it did have one, say r, we
would have

1=yprlsm (p2)r 2= -2 = ] (modp),

which is impossible.

As an example of the application of the criterion, let us see if x2= 7
(mod 31) has a solution. We must calculate 731~ = 715 and see what its
remainder is upon division by 31. Of course we do not need to carry
out the actual division: we have

7> = 49 = 18 (mod 31);
squaring, we get

7+ = 182 = 324 = 14 (mod 31),
7%= 142 = 196 = 10 (mod 31),

i

and

7'6 = 102 = 100

7 (mod 31).

Since 7 and 31 are relatively prime, we may divide the last congruence
by 7 to get 75= 1 (mod 31). It follows from Euler’s Criterion that
x2= 7 (mod 31) has a solution.

Though Euler’s Criterion tells us when x? = a (mod p) has solutions,
it gives us no way of actually finding them. Of course, it is possible to
substitute x = 1, 2, 3, 4, . . . until a solution is found, but this proce-
dure can be long and tiresome. The following method—adding multi-
ples of the modulus and factoring squares—is sometimes more conven-
ient. For example, take x? = 7 (mod 31), which we know to have a
solution. Adding 31 repeatedly, we have

x?2=T7=38= 69 = 100 = 10> (mod 31),

and we see immediately that the congruence is satisfied whenx = 10 or
—10; the two solutions are thus 10 and 21. That example was easy; a
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more typical one is x2 = 41 (mod 61), which Euler’s Criterion shows to
have a solution. We have

x?= 4] = 102 = 163 = 224 = 42 - 14 (mod 61).
Also,
14=75= 52-3 (mod 61),
sox2= 4*- 5 -3 (mod 61). But
3= 64= 8§ (mod 61),

sox?2= 4?-52- &= 160% = 382 (mod 61). Thus x = *=38 (mod 61), and
the two solutions are 38 and 23. This method will, with more or less
labor, always produce the solutions.

Exercise 6. Find the solutions of x? = 8 (mod 31).

Euler’s Criterion is sometimes cumbersome to apply, even to con-
gruences with small numbers like x2 = 3201 (mod 8191). We will now
develop a method for deciding when an integer is a quadratic residue
(mod p). The method is relatively easy to apply, even when the num-
bers are 3201 and 8191. It is based on the famous quadratic reciprocity
theorem, which has many applications other than the one we will use it
for.

We start by introducing notation to abbreviate the long phrase,
“x?=g (mod p) has a solution.”” The French mathematician A. M.
Legendre thought that he had proved the quadratic reciprocity theorem
(Theorem 4 of this section). He was mistaken, but in the course of his
work on it, he introduced a useful symbol:

The Legendre symbol, (a/p), where p is an odd prime and pj’a is
defined by

() = { 1 if a is a quadratic residue (mod p)
—1ifa is a quadratic nonresidue (mod p).

For example, (3/5) = —1becausex? = 3 (mod 5) hasno solutions, and
(1/5) = 1, because 1 is a quadratic residue (mod 5). Neither (7/15) nor
(91/7) is defined, the first because the second entry in the symbol is not
an odd prime, and the second because 7|91.

* Exercise 7. What is (1/3)? (1/7)? (1/11)? In general, what is (1/p)?

* Exercise 8. What is (4/5)? (4/7)? (4/p) for any odd prime p?
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Exercise 9 (optional). Induce a theorem from the two preceding
exercises.

To find out whether x2 = 3201 (mod 8191) has a solution, we can
evaluate (3201/8191). To do this, we will need some rules on how
Legendre symbols can be manipulated. We will start with three simple
but important properties.

Theorem 3. The Legendre symbol has the properties

(A) ifa =b (mod p), then (a/p) = (bip),
(B) if pfa, then (a*p) =1,
©) ifpj"a and p[b, then (ablp) = (alp)(bip).

In the above properties and throughout the rest of this section, we
will agree that p and q represent odd primes, and that the first entry in a
Legendre symbol is not a multiple of the second entry; with these
conventions, all Legendre symbols are defined.

Proof of Theorem 3. (A): Suppose that x? = g (mod p) has a solution. If
a = b (mod p), then x2 = b (mod p) also has a solution—the same one.
This shows that

4) if (ap)=1 and a= b (modp), then (blp) = 1.

Exercise 10. Verify that
() if (a/p)=—-1 and a= b (modp), then (blp) = —1.

Together, (4) and (5) show that (A) is true.

(B): Clearly, x? = a® (mod p) has a solution—namely, the least resi-
due of a (mod p).

(C): This important property of the Legendre symbol, in combination
with the quadratic reciprocity theorem, makes the symbol useful for
computations. In words, (C) says that the product of two residues is a
residue; the product of two nonresidues is a residue; and the product of
aresidue and a nonresidue is a nonresidue. To prove (C) we use Euler’s
Criterion. In terms of the Legendre symbol, it says

(ap)=1 if a®v?2=1(modp),
and

(alp) = -1 if a®?P2= —1(mod p).
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Comparing the 1's and —1’s, we see that
6) (alp) = a® V2 (mod p).
So, from (6) and the fact that (xy)* = x™y" (mod p), we have
(ablp) = (ab)yr—112 = gqw-1I2pP-VI2 = (a/p)(b/p) (mod p).
We have not yet proved (C); we have only shown that
(ablp) = (alp)(b/p) (mod p).

But the left-hand side of the congruence is either 1 or —1, and sois the
right-hand side. Hence, the only way that the two numbers can be
congruent modulo p is if they are equal. We have now proved (C).

We can also use (6) to give quick proofs of (A) and (B). For example,
to prove (A), we have from (6)

(alp) = P~ V2 = pr-Di2 = (b/p) (mod p),
and since the value of a Legendre symbol is 1 or —1, congruence
implies equality.
Exercise 11. Prove (B), using (6).
Exercise 12. Prove that (4a/p) = (alp).

“ Exercise 13. Evaluate (19/5) and (—9/13) by using (A) and (B).

The quadratic reciprocity theorem tells us how (p/q) and (¢/p) are
related. The theorem was guessed by Euler and Legendre years before
it was first proved by Gauss, who eventually gave several proofs. It is
an example of a deep and important theorem whose statement was
arrived at by observation. Consider the following tables:

p p
5 711 1B 17 19 23 5 7 11 13 17 19 23

3[-1 1-1 1-1 1-1 3-1 -1 1 1 -1-1 1
5 -1 1-1-1 1-1 s{ -1 1-1-1 1-1

7 1-1-1-1 1 7 -1-1-1 1-1

g 11 -1-1-1-1 g 11 -1-1 1 1
13 1 -1 1 13 1-1 1
17 1 -1 17 1 -1
19 1 19 -1

0222)) (g/p)
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Can you by observation see any relation between (p/q) and (¢/p)? These
tables are perhaps too small to allow any firm guesses to be made
(Gauss’s tables had thousands of entries), but note that the columns in
both tables are the same for p = 5, 13, and 17. So are the rows in both
tables the same for these three primes. What 5, 13, and 17 have that the
rest of the primes less than 29 do not is the property of being congruent
to 1 (mod 4). On this evidence, we might make the correct guess:

If either p or g is congruent to 1 (mod 4), then (p/q) = (g/p)-

All of the entries not covered by this rule change sign from one table to
the next. This behavior can be explained by the following hypothesis:

If p and g are both congruent to 3 (mod 4), then (p/q) = —(g/p).

These guesses are in fact generally true, and they make up

Theorem 4. The Quadratic Reciprocity Theorem. If p and g are odd
primes and p = g = 3 (mod 4), then (p/q) = —(g/p). Otherwise, (p/q) =
@p)-

We will postpone the proof of this theorem until the next section, but
we will not hesitate to apply it for lack of a proof. Suppose that we want
to see if x2 = 85 (mod 97) has a solution. That is, we want to evaluate
(85/97). With Theorems 3 and 4, we can carry the evaluation to a
conclusion. We have

@) (85/97) = (17 - 5/97) = (17/97)(5/97)

by property (C) in Theorem 3. We will attack each factor in (7) sepa-
rately. Because 97 = 1 (mod 4) (and, for that matter, 17 = 1 (mod 4)
too), the quadratic reciprocity theorem says that

17/97) = (97/17).
Property (A) in Theorem 3 says that

(97/17) = (12/17)
and

(12/17) = (4 - 3/17) = (4/17)(3/17) (by (C))

= (3117) (by (B))
= (17/3) (by Theorem 4)
= (2/3) (by (A))

=-1 (by inspection).
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The other factor is simpler:
(5/97) = (97/5) (by Theorem 4)
= (2/5) (by (A)
=-1 (by inspection).
Putting these calculations back in (7), we get
(85/97) = (17/97)(5/97) = (—1)(—-1) =1,

thus the congruence has a solution. By applying (A) first, we could
have evaluated (85/97) in another way:

(85/97) = (—12/97) = (—1/97)(4/97)(3/97) = (—1/97)(3/97).
We see that
B9 =0973)=0113)=1,

so (85/97) = (—1/97); if we know (—1/97), we then know (85/97).

If you look at a number of examples of Legendre symbols, it will
become evident that to evaluate any one by using Theorems 3 and 4, it
is enough to know what (—1/p) and (2/p) are for any p. Euler’s Criterion
quickly gives us (—1/p):

Theorem 5. If p is an odd prime, then
(-lp)=1 if p

1 (mod 4),
and

(=1p)= -1 if p=3(mod4).

In words, —1is a quadratic residue of primes congruent to 1 (mod 4),
and a nonresidue of all other odd primes.

Proof. Euler’s Criterion says that
(=1p) = (1>~ (mod p);

since (p —1)2isevenif p=1 (mod 4) and (p — 1) isoddif p=3
(mod 4), the theorem is proved.

In the example we were just considering, (—1/97) = 1 because 97 = 1
(mod 4).
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Theorem 5 tells us that we can sometimes find square roots of —1
modulo p: whenever p = 1 (mod 4), —1 has a square root (mod p).

Exercise 14. For which of the primes 3, 5, 7, 11, 13,17, 19, and 23 is —1
a quadratic residue?

Exercise 15. Evaluate (6/7) and (2/23)(11/23).

It is not so easy to determine whether 2 has a square root (mod p).
Euler’s Criterion says that

@2/p) = 2%~2 (mod p),

but it is not obvious for which primes 2#-/2 is congruent to 1 (mod p).
We will find out in the next section. For now, we state the result:

Theorem 6. If p is an odd prime, then

Q2p)=1 if p=1 or 7 (mod 8),
Qlp)=-1 if p=3 or S (mod 8).

Theorem 6 together with Theorems 3 to 5 enables us to evaluate
any Legendre symbol. For example, we can now evaluate (3201/8191).
The calculations go as follows:

(3201/8191) = (3/8191)(11/8191)(97/8191);
(3/8191) = —(8191/3) = —(1/3) = —1,
(11/8191) = —(8191/11) = —(7/11) = (AVT) = (4/7) = 1,

and

(97/8191) = (8191/97) = (43/97) = (97/43) = (11/43)
= —43/11)= - (-1/11) = 1.

Thus we see that (3201/8191) = (—1)(1)(1) = —1. Compare the labor
of evaluating (3201/8191) as we have just done with that of determining
by trial and error whether x? = 3201 (mod 8191) has a solution. To
calculate 12, 22, . . . , 40952 and divide each by 8191 is no light
task. Theorems 3 to 6 are, for this job at least, an enormous help.
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Problems

1.

15.

16.

17.
18.

19.

20.

Which of the following congruences have solutions?

x2=7 (mod53) x?= 14 (mod 31)
x2=53 (mod7) x?= 25 (mod 997)

. Which of the following congruences have solutions?

x*=38 (mod 53) x?= 15 (mod 31)
x*=54 (mod 7) x? = 625 (mod 9973)

Find solutions for the congruences in Problem 1 that have them.

. Find solutions for the congruences in Problem 2 that have them.

. Calculate (33/71), (34/71), (35/71), and (36/71).

. Calculate (33/73), (34/73), (35/73), and (36/73).

. Solve 2x?+3x + 1= 0(mod 7) and 2x* + 3x + 1= 0 (mod 101).

. Solve3x*+x +8=0(mod 11) and 3x* +x + 52 = 0 (mod 11).

. Calculate (1234/4567) and (4321/4567).

. Calculate (1356/2467) and (6531/2467).

. Show that if p =g + 4a (p and g are odd primes), then (p/q) = (a/q).

. Show that if p = 12k + 1 for some k, then (3/p) = 1.

. Show that Theorem 6 could also be written (2/p) = (—1)**-"* for odd

primes p.

. Show that the gquadratic reciprocity theorem could also be written

(p/q)(g/p) = (—1)»~1e-vi for odd primes p and q.

Student A says, "‘I've checked all the way up to 100 and I still haven't
found » so that n* + 1 is divisible by 7. I’m tired now—1I’ll find one tomor-
row.”’ Student B says, after a few seconds of reflection, ‘*No you won’t.”’
How did B know so quickly?

Show that if a is a quadratic residue (mod p) and ab = 1 (mod p) then b is a
quadratic residue (mod p).

Does x* = 211 (mod 159) have a solution? Note that 159 is not prime.
Prove that if p =3 (mod 8) and (p — 1)/2 is prime, theq (p—DRis a
quadratic residue (mod p).

Generalize Problem 16 by finding what condition on r will guarantee that if
a is a quadratic residue (mod p) and ab = r (mod p), then b is a quadratic
residue (mod p).

Suppose that p =g + 4a, where p and g are odd primes. Show that
(alp) = (alg).
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Quadratic Reciprocity

In this section we will prove the two theorems stated and used without
proof in the last section: the quadratic reciprocity theorem and the
theorem that enables us to evaluate (2/p). The proof of the quadratic
reciprocity theorem is not easy. Gauss guessed that the theorem was
true in 1795, at the age of 18, after tabulating more than 10,000 values of
(p/q), but he was not able to find his first proof of it for more than a
year. Any proof that could elude the mighty mind of Gauss for that long
is not easy to find.

At the base of both theorems is the following result, sometimes
called Gauss's Lemma:

Theorem 1. Suppose that p is an odd prime, p *a, and there are among
the least residues (mod p) of

a,2a,3a,...,(p—;—1>a

exactly g that are greater than (p — 1)/2. Then x* = a (mod p) has a
solution or no solution according as g is even or odd. Otherwise stated,

(alp) = (=1)°.

o4
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Before proving the theorem, we will illustrate its application by tak-
inga =5 and p = 17. We have (p — 1)/2 = 8, and the integers

s, 10, 15, 20, 25, 30, 35, 40
have least residues (mod 17)
5, 10, 15,3,8,13,1, 6.

Three of these are greater than (p — 1)/2. Theorem 1 then says that S is
a quadratic nonresidue (mod 17), which is so.

Exercise 1. Check that the theorem gives the right result in this case by
applying Euler’s Criterion and showing that 58= —1 (mod 17).

Proof of Theorem 1. Let
FisTas o« « 57k
denote the least residues (mod p) of
a,2a,...,((p—1R)a
that are less than or equal to (p — 1)/2, and let
S1y 825+ - « 58y

denote those that are greater than(p — 1)/2. Thusk + g = (p — 1)/2. To
prove the theorem, from Euler’s Criterion it is enough to show that

a(p—1)12 = (—])g (mOd P),

and this is what we proceed to do. In the example above, k = 5, and
g =3; the set of r’s is {5, 3, 8, 1, 6}, and the set of s’s is {10, 15, 13}.
Both in the example and in general, no two of the r’s are congruent
(mod p). Suppose that two were. Then we would have for some k, and
ks,

kla = kza (mOd p)y 0= kl = (p - 1)/2, 0= kz = (p - 1)/2.

Because (g, p) = 1, it follows that k; = k,. For the same reason, no two
of the s’s are congruent (mod p). Now, consider the set of numbers

(l) FisFas o arkap_sl’p—'SZs D 9p—sg'

Each integer n in the set satisfies 1 =n =< (p — 1)/2, and there are
(p — 1)/2 elements in the set. Gauss noticed, and we will now prove,
that the numbers in the set are all different. From this it will follow that
the elements in (1) are just a permutation of the integers

(2) 192a- . "(p‘l)/z,
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and thus the product of the elements in (1) is the same as the product of
the elements in (2). From this the theorem will follow. In the example
we considered, the set of r’s was {5, 3, 8, 1, 6}, and the set of (p —s)’s
was {7, 2, 4}; between them, they include all the integers from 1 to 8.

To show that the elements in (1) are distinct, we have only to show
that

r; ¥ p ~s; (mod p)

for any i and j, because we have already seen that the r’s and s’s are
distinct among themselves. Suppose that for some i and j we have

ri=p —s; (mod p).

Thenr; + s;= 0 (mod p). Since r; = ta (mod p) and s ;= ua (mod p) for
some ¢t and x, with ¢t and « positive integers less than or equal to
(p — D2, we would have

(t + u)a = 0 (mod p);

since (a, p) =1, we have ¢t + u = 0 (mod p), and this is impossible,
because 2 =1 +u = p — 1. Thus all of the elements in the set (1) are
distinct, and consequently are a rearrangement of the elements in (2).
Hence,

() nrys o r @ —s)p =) (p—s) =12 - ((p— D).

Because p —s;= —s; (mod p) for all j, and because there are g such
terms, (3) becomes

-1
@ rre sy - sy(-1p = (E5) 1 (mod p)
But ry, ry, . . ., Fks S1, So . . ., 5, are, by definition, the least
residues (mod p) of
a,2a, ..., {p—=112)a
in some order, so that the productr i, - - - ris152 - - * 5, Is congruent

(mod p) toa(2a)(3a) - - - ((p — 1)12)a. Thus (4) gives

a®-v(_1ye (p ; 1)15 (P ; 1)! (mod p).

The common factor is relatively prime to p and may be canceled to
give

a®»~v2(-1)?= 1 (mod p).

If we multiply both sides of the last congruence by (—1)?, we have
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a®2 = (-1)? (mod p).

But we know that a'»~ "2 = (a/p) (mod p). Putting the last two congru-
ences together, and noting that if the two numbers are congruent (mod
p), then they must be equal, we have

(alp) = (=1)*,

and this is what we wanted to prove.

* Exercise 2. Apply the theorem to determine whether x2= 7 (mod 23)

has a solution.

We will now apply the last theorem to evaluate (2/p) for any odd
prime p. According to the theorem, we need to find out how many of
the least residues (mod p) of

) 2,4,6, . .. ,2(321)
2

are greater than (p — 1)/2. Since all the numbers in (5) are already least
residues, none of them being larger than p, we have only to see how
many of them are greater than (p — 1)/2. Let the first even integer
greater than (p — 1)/2 be 2a. Between 2 and (p — 1)/2 there are
a — 1 even integers, namely 2, 4, 6, . . . , 2(a — 1). So, the number
of even integers from 2 to p — 1 which are greater than (p — 1)/2 is
the total number of even integers, (p — 1)/2, minus the number less
than (p — 1)/2, which is a — 1. That is,

_p-1
g . 2 (a 1)

0 i 2 2a—1 2a 2a+1 p—1 P
But
2a is the smallest integer greater than 2—;—1— , SO
. . : -1
a is the smallest integer greater than 2 a0 SO
a — 1is the smallest integer greater than p—3 , SO

4
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—(a — 1) is the largest integer less than — (—ﬁ) , SO

)
p-1_p-5.

g is the largest integer less than 5 7y

g is thus the largest integer less than (p + 3)/4.

Exercise 3. Verify that the entries in the following table are correct.

p 5 7 11 13 17 19 23 29
gl 1 12 3 3 4 5 6 7

w

Suppose that p=1 (mod 8). Then p=1+ & for some k£, and
(p+3)/4=@4 +8kYa=1+2k. It follows that g =2k and that
(=1y¥ = 1. From Theorem 1, 2/p) =1 if p =1 (mod 8). Suppose that
p =3 (mod8). Thenp = 3 + 8k forsomek,and (p + 3)/4 = (6 + 8k)/4 =
2k + 3/2. It follows that g =2k + 1 and that (1) =-1. From
Theorem 1, 2/p) = —1 if p = 3 (mod 8).

Exercise 4. Check the cases p = 5 (mod 8) and p = 7 (mod 8).

Thus we have proved

Theorem 2. If p is an odd prime, then
Qp)=1 if p=1 or 7 (mod 8),
Q)= -1 if p=3 or 5 (mod 8).

As an example of the use of Theorem 2, we will state and prove a
result that is not used later, but is pleasing. Although we know when
a number has primitive roots, finding the actual roots is generally not
easy. For example, 2 is a primitive root of 3, 5, 11, 13, 19, 29, 37, 53,
59, 61, 67, and 83 among the primes less than 100, and it is not a
primitive root of the others. No theorem has been proved that will tell
which primes 2 is a primitive root of, and it has not even been proved
that 2 is a primitive root of infinitely many primes. But we do have
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Theorem 3. If p and 4p + 1 are both primes, then 2 is a primitive root
of 4p + 1.

Proof. Let g =4p + 1. Then ¢(q) = 4p, so 2 has order 1, 2, 4, p, 2p,
or 4p (mod g); we will show that the first five cases are impossible.
We have

22p = 24-1 = (2/q) (mod q)

by Euler’s Criterion. But p is odd, so 4p = 4 (mod 8), and g = 4p +
1= 5 (mod 8); we know from Theorem 2 that 2 is a quadratic non-
residue of primes congruent to 5 (mod 8). Hence

2% = —1 (mod g),

so 2 does not have order 2p. Nor can the order of 2 be any of the
divisors of 2p, which are of course 1, 2, and p. Since 2 does not have
order 4 either (2¢= 1 (mod g) implies g | 15, so g = 5, which is im-
possible), the theorem is proved.

We will now give Gauss’s third proof of the quadratic reciprocity
theorem. It depends on Gauss’s Lemma (Theorem 1) and on a lemma
we will now prove.

Lemma 1. If p and g are different odd primes, then

(p—Emz[kjjl_i_(q_Emz l:.kﬂ]zp_l.q_l‘
& Lp & La 2 2

The notation [kg/p] denotes the greatest integer not larger than
kqlp. For example, take p = 11 and g = 7. Then

© S[E]-[F][%]+[B]+[Z) 3
=0+1+1+2+3=7

and

o B

=1+3+4=38,
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and (p — 1)@ — 1)/4=15=8+ 7. The numbers have a geometrical
interpretation: [35/11] is the number of positive integers less than
35/11, and in the figure below that is the number of lattice points
(points with integer coefficients) above the x-axis and below the line
y =7Tx/11 when x = 5. The other terms in (6) are the number of

y

y=1a*

1 1 |
T T

3 4 5

’O =

lattice points below the line when x =1, 2, 3, and 4. In the same
way, the terms in (7) are the number of lattice points to the left of
the line and to the right of the y-axis fory = 1, 2, and 3. The number
of lattice points in the 5-by-3 rectangle is 15.

Exercise 5. Verify that the lemma is true forp =5and g = 7.

Proof of Lemma 1. The idea used in the example works in general. Let

S(p, q) =(D§IZ [%] ;

k=1

we are thus trying to prove that
S(p, 9 +S@, p)=(p — g — D/AA.

The figure on page 101 shows the same geometry as the figure on this
page, but in general (actually, in the figure on page 101, g = 13 and
p = 11). Just as in the example, S(p, g) is the number of lattice
points below the line y = gx/p and above the x-axis forx =1, 2, . . .,
(p — /2. Also, S(q, p) is the number of lattice points to the left of the
line and to the right of the y-axis. There are no lattice points on the line,
because if (a, b) were on the line, then b = ga/p or bp =qa, and this is
impossible. (Since pl bp, we have p | ga and since (p, g) = 1, it follows



Quadratic Reciprocity 101

1Y

B

that p |a. But 1 = a = (p — 1)/2, and there are no multiples of p in that
interval.) Thus each of the lattice points in or on the boundary of the
rectangle ABCD is counted exactly once; on the one hand, this number
is S(p, q) + S(g, p), and on the other it is ((p — 1)/2)((g — 1)/2). This
proves the lemma.

Theorem 4. The Quadratic Reciprocity Theorem. If p and g are odd
primes, then

(plgXalp) = (—1)P-Vie-1u4,

Note that this is equivalent to the way we stated the theorem earlier
(Theorem 4 of Section 11): If p =g = 3 (mod 4), then (p/q) = —(g/p);
otherwise, (p/q) = (g/p). This is so because (p — 1)(g — 1)/4 is even un-
less p =g = 3 (mod 4).

Proof. Asin the proof of Gauss’s Lemma, let us take the least residues
(mod p) of



102 Section 12

q9.2,3q, . . . ,’3—2:-161
and separate them into two classes. Put those less than or equal to
(p — 1)/2 in one class and call them
TisTay « « o 5 Fis
and put those greater than (p — 1)/2 in another and call them
Siy 825 « « « 4 8g.

Thus k + g = (p — 1)/2. The conclusion of Gauss’s Lemma was that
(@/p) = (—1)y. For short, let

R‘—'l”1+r2+"'+l’k and S:S1+S2+"'+Sg-

While proving Gauss’s Lemma, we showed that the set of numbers

8 Fiskas « o« sFPis D =81, P =89y - « - » P — 8,
was a permutation of
9) 1,2, ....,(p— D2

It follows that the sum of the elements in (8) is the same as the sum of
the elements in (9). Remember that in the proof of Gauss’s Lemma, we
took the product of the elements in (8) and equated it to the product of
the elements in (9). Here, then, is a possible starting point of this proof:
Gauss may have thought (in German), ‘‘What would happen if I
equated the sums instead of the products?’’ and then constructed the
proof. Whatever it was that he thought, the lesson to be learned is
that proofs often do not start at the beginning: The sum of the numbers
in (9) is, by a well-known formula (1+ 2+ - - - + n =n{ + 1)/2; see
Appendix A for a proof),

Hegt) (o5t - 250

2 2 2 8

The sum of the elements in (8) is
k g

> ritY (p—s)=R+gp-S.
Jj=1 j=1

Thus we have

(10) R=S—gp+(p*—1)8.

The least residue (mod p) of g (=1, 2, ..., (p—~1R2) is the
remainder when we divide jg by p. We know the quotient, [jg/p], so
if we let ¢; denote the least residue (mod p) of jg, we have

Jq = Ujalplp + t;,
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Jj=12, .. .,(p— 1)2.If we sum these equations over j, we have

(p—1)/2 (p—Di2 (p=1/2

Z ja=>3 Uallp+ X

j=1 i=1

or
(p-1)/2 {(p—1)/2 . k g
g Y j=p 3 Uapl+3 rn+Y s
j=1 Jj=1 =1 Jj=1
or
(11) q(P* - 1)/8=pS(p,q)+ R +S.

Substituting into this from (10), we get
q(p* — D8 =pS(p, 9) + 25 —gp + (p* — 1)/,
or

(12) (@ — D(p* -~ 1)/8=p(S(p, q9) —g) + 2S.

In (12), the left-hand side is even (because (p? — 1)/8 is an integer and
g — lis even), and 2S is even. It follows that the remaining term in (12)
is even, and so S(p, q) — g is even. Hence

(- 1)Stp,q)-a =1.
Since (—1)? = (g/p), then
(13) (=1)5®2 = (-1)° = (g/p).

Now we can repeat the argument with p and g interchanged—nowhere
have we required g to have a property that p does not—and get

(14) (=D5@” = (plq).
Multiplying (13) and (14), we have
(~1)swowsen = (plgXglp),
and from Lemma 1, we have
(=1)P-1e=v* = (plgXalp),

which is what we wanted.

The proof may seem to be unsatisfying: each step is correct, and
hence the conclusion is true, but it is not clear why the steps are there
and where they came from. That is because there are at least eight
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Section 12

levels of mathematical understanding, and it is hard for someone on a
lower level to appreciate what goes on at a higher level. The levels are,
I think:

W

1. Being able to do arithmetic.

2. Being able to substitute numbers in formulas.
3.
4

. Being able to understand the hypotheses and conclusions of

Given formulas, being able to get other formulas.

theorems.

. Being able to understand the proofs of theorems, step by step.

6. Being able to really understand the proofs of theorems: that is,

seeing why the proof is as it is, and comprehending the inward-
ness of the theorem and its relation to other theorems.

7. Being able to generalize and extend theorems.

8. Being able to see new relationships and discover and prove en-

tirely new theorems.

Those of us stuck at level 5 can no more understand the workings of a
level 8 mind than a cow could understand calculus.

Problems

*t 1. Adapt the method used in the text to evaluate (2/p) to evaluate (3/p).

2.
T 3.

4.

TS

6.

7.

8.

Show that 3 is a quadratic nonresidue of all primes of the form 4" + 1.

Show that 3 is a quadratic nonresidue of all Mersenne primes greater than
3.

(a) Prove that if p = 7 (mod 8), then p | 2*~"2 — 1),

(b) Find a factor of 2% — 1.

(a). If p and g = 10p + 3 are odd primes, show that (p/q) = (3/p).

(b) If p and g = 10p + 1 are odd primes, show that (p/q) = (—1/p).

(a) Which primes can divide n* + 1 for some n?

(b) Which odd primes can divide n* + n for some n?

(¢) Which odd primes can divide n* + 2n + 2 for some n?

(a) ‘Show that if p = 3 (mod 4) and a is quadratic residue (mod p), then
p —a is a quadratic nonresidue (mod p).

(b) What if p = 1 (mod 4)?

If p > 3, show that p divides the sum of its quadratic residues that are
also least residues.
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*+ 9. If p is an odd prime, evaluate

(1-2p)+@2-3p)+---+(p—2p - Dp).

10. Show that if p = 1 (mod 4), then x>= —1 (mod p) has a solution given by
the least residue (mod p) of ((p — 1)/2)!.
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Numbers in Other Bases

One of the great accomplishments of the human mind, and one that
made mathematics possible, was the invention of our familiar notation
for writing integers. We write integers in a place-value notation, with
each place indicating a different power of 10. For example,

314,159 =3-10° + 1-10* + 4-10° + 1-10? + 5-10* + 9- 10°.

The first people to use place-value notation were the Babylonians of
more than 3000 years ago. None of the other ancient civilizations—not
the Egyptians, the Chinese, or the Greeks—had the place-value idea,
and if the Babylonians had not discovered it, it might have remained
forever undiscovered, with great consequences for the history of the
human race. Among other things, this book would never have been
written. The Babylonians transmitted the idea to the Hindus (before
600 BC), from whom the Arabs got it (by 600 AD), and the Arabs made it
known in Europe (1200 AD).

There is no reason why some integer other than 10 could not be used
for the same purpose. The choice of 10 is only an anatomical accident.
In fact, other integers—we will call them bases—have been used in the
past. The Babylonians sometimes used the base 60, and the ancient
Mayans used the base 20. Today, numbers written in the bases 2, 8, and

106
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16 are used by computers. In this section, we will look at integers in
bases other than 10.

We start by looking at a special case.

Theorem 1. Every positive integer can be written as a sum of distinct
powers of two.

For example, 22=2¢+22+2' and 23 =2%+2%+2'+2°% But
24 =23+ 23 + 2% is not a proper representation, because the powers of
two are not distinct.

Exercise 1. Write 31 and 33 as sums of distinct powers of two.

Proof of Theorem 1. The idea of the proof is to take an integer n and
subtract from it the largest power of 2 that is smaller than it—say 2~.
Then we do the same for n — 2*. If we continue this process, we will
eventually get a representation of n in the form that we want. To make
this argument rigorous, we prove the theorem by induction: 1 = 29,
2 =2',and 3 =2° + 2!, so the theorem is true if the integeris 1, 2, or 3.
Suppose now that every integerk, k < n — 1, canbe written as a sum of
distinct powers of 2. We want to show that n can also be so written. We
know that n falls between some two distinct powers of 2; that s, there is
an integer r such that

2T = p < 27HE,

Exercise 2. What isr if n = 74? If n = 174?

The largest power of 2 not larger than n is 27. Let n’ = n — 27. Then
n’ = n — 1, so the induction assumption tells us that it can be written as
the sum of distinct powers of two:

nt=20 42 g 42,
where e;# e; if i#j. Since n’ = n — 27, we have
(1) n=2r+261+2ez+ +.2e,‘.’

and son can be written as a sum of powers of two. To complete the
proof, we need to show thatr is different from any of e, €2, . . ., ex.

* Exercise 3. Show that this is true.
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We now show that the representation (1) is unique.

Theorem 2. Every positive integer can be written as the sum of distinct
powers of 2 in only one way.

Proof. Suppose that n has two representations as a sum of distinct
powers of 2. We will show that the representations are really the same.
To make the notation less clumsy, we note that any sum of distinct
powers of 2 can be written in the form

for some k, where d; = 0 or 1for each i. Conversely, every such sum is
a sum of distinct powers of 2. Hence it is immaterial whether we write n
in the form (1) or (2), and (2) has the advantage of having no subscripts
on the exponents. If n has two representations, we have

(3) n=d0+d1'2+d2'22+~~-+dk'2“'

=€y te c2+e, 22+ - te, -2k,
where d; =0 or 1 and ¢, =0 or 1 for each i. (Note that we lose no
generality in assuming that the two representations have the same
number of terms. If one is longer than the other, we can add zero terms

to the shorter one until the two have the same length.) Subtracting the
second representation in (3) from the first gives

(4) 0=(do—ep) +(dy —€1)2+(dy —e,)-22+ -+ + (dy, —€,)-2%
Hence 2|(d, — e,). But since d, and e, are either 0 or 1, it follows that
_1 = do *eo = 1.

Since the only multiple of 2 in that range is zero, d, = ¢,. Thus the first
term in (4) disappears, and we may divide what remains by 2 to get

) 0=(di ~e) + (dy =€) 2+ - + (dy =€) 2

The same argument as before shows that d, = ¢,. Dropping the term
d, —e, from (5), dividing by 2 and applying the same argument again,
we getd, =e,. Andsoon: d; —e; =d;, ~e, =" =d, —e, =0, and
the two representations in (5) were the same.

Theorems 1 and 2 show that every n can be written in exactly one
way in the form
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(6) do+d1"2+dy 22 +dy 22+ -+ - + dy-2F

for some k, where each d is either 0 or 1. This is like the ordinary
decimal representation for integers. It is so like it that we can write
numbers of the form (6) in the same style as we usually write integers.
The powers of 2 and the plus signs in (6) are not essential, since the
thing that determines n is the sequence d,, d,, . . . , d;. We will
write the expression (6) as

@ydy—y - - - drdo)y,

and say that we have written the integer in the base 2. The subscript 2
reminds us that d, is multiplied by 27. For example,

101001, =1+0-2+0-22+1-224+0-2¢4+1-2°
=1+8+32=41.
In the other direction,

94 =64+ 16 + 8+ 4 +2
=1:2540:2541-20+ 123+ 1-22 4+ 121 + 0:2°
= 1011110, ‘

Exercise 4. Evaluate 1001,, 111,, and 1000000,.

* Exercise 5. Write 2, 20, and 200 in the base 2.

We know that every integer can be uniquely expressed in the form
do+d; - 10+d,-10* + - - - +d, - 10*F

for some k, with 0 = d;<10,i=0,1,. . . ,k, and Theorems 1 and 2

show that every integer can be uniquely expressed in the form
do+d1'2+dz'22+ -t ‘+dk'2k

for somek,with0 =d;<2,i=0,1,. . .,k. What we can do for 2 and

10, we ought to be able to do for any integer greater than 1. In fact, we
can. We will prove ‘

Theorem 3. Let b = 2 be any integer (called the base). Any positive
integer can be written uniquely in the base b; that is, in the form

n=dy+dy"b+dyb®+ - +di bk

for somek, with0=d,<b,i=0,1, . . . , k.
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Proof. We will first show that each integer has such a representation
and then show that it is unique. To show that there is a representation,
we could adapt the proof of Theorem 1, but the proof that we will
present here (which could also be applied to Theorem 1) gives a con-
struction for the digits of n in the base b. Divide n by b: the division
algorithm says

n=q.b+d,, 0=d,<b.
We can divide the quotient by b,

q, =q:b +d;, 0=d, <b,
and continue the process,

g =qsb +ds, 0=<d,<b,
qs; =q.b +ds, 0=d;<b,

and so on. Sincen >¢q, > g, >qs;> -+ - - and each g; is nonnegative, the
sequence of g’s will sconer or later terminate. That is, we will come to &
such that

g =0-b+d; 0=d.<b.
But then

n=d,+qb=d,+ (d +q.b)b =d, +dib + g:b*
= do + d[b + (dz + Q3b)b2 :do + dlb + dzb2 +Q3b3

=dy+db +dyb? + - +di b+ qub*
=d0+d1b+dzb2+ +dkbk7

and this is the desired representation.
To show that it is unique, we use the same idea we used in the
proof of Theorem 2. Suppose that n has two representations:

n=d0+d1b+d2b2+ "'+dkbk
=ey teb+eb+ - +epbk

for some k, where
(7 0=d;<b and O0=<e,<h

fori=0,1, . .. ,k. (As in Theorem 2, there is no loss in generality
in assuming that the two representations have the same number of
terms.) Subtracting one representation from the other gives



Numbers in Other Bases 111

0=(ds —eo) + (d, —e))b + (d; —e;)b> + -+ - + (di —ex)b".
We see that b | (dy — €o). From (7) it follows that d, = e,.

Exercise 6. Complete the proof.

For short, we will write
dy+db+ - + dib* = (drdp-1 - - drdo-
For example, o
111, =1+1-74+ 1-7* = 57,,.

We will usually omit the subscript b -when b = 10. Unless noted
otherwise, every integer without a subscript is written in base 10.

To find the representation of a base-10 integer in the base b, the
scheme used in the proof of Theorem 3 is as good as any. For
example, to write 31415 in the base 8, we perform repeated divisions
by 8:

31415 = 8-3926 + 7,
3926 = 8-490 + 6,

490 = 8-61 + 2,
61=8-7+35,
7=8-0+7,

and hence 31415,, = 75267;. (Check:

752673 =7+ 68 +2-8 + 58+ 78 =7+ 48 + 128 + 2560 + 28672
= 31415.)

To make the arithmetic easier, the divisions may be arranged
differently. For example, we have 31415,, = 160406,:

quotients remainder
7) 31415
4487

641

91

13

1

0

—_ Ao R ONRN
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Problems

1.

Write 1492 in base

. Write 1776 in base

. Write in base 10:

3141, 3141, 3141, 3141,.

. Write in base 10:

12156 1215, 1215, 12154,.

. Solve for x:

123, = x; 2345 = xg 123, = 1002,.
Solve for x:

345, =x, 456, =2201,  2x3, = 1x10;.

7. Construct a multiplication table in base 7.

8. Construct a multiplication table in base 8.

9. All numbers in this problem are in base 9. Calculate, in base 9 (that is, no

10.

1.

12.

13.
. (a) Show that 123;, 132,, 312,, 231,, and 213; are even integers.

conversions to any other base):
15+ 24 + 33 1620 — 1453
42-12 314-152.

With the same instructions as in Problem 9, calculate

16 + 35 + 44 1453 — 1066
53-23 425-263.

Let (.d,d>d, - - - ), stand for d,/b + d,/b* + d;/b® + . . . . Evaluate as ra-
tional numbers in base 10:

(.25), (.333, . ), (.5454. . ;.
With the same instructions as in Problem 11, evaluate
(.36)g (.444. . ) (.6565. . s
In which bases b is 1111, divisible by 57
(b)- Show that in the base 7, an integer is even if and only if the sum of its
digits is even.

(c) In which other bases is it true that if an integer is even, then any
permutation of its digits is even?
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15. An eccentric philanthropist undertakes to give away $100,000. He is eccen-
tric because he insists that each of his gifts be a number of dollars that is a
power of two, and he will give no more than one gift of any amount. How
does he distribute the money?

16. Prove that every positive integer can be written unique in the form
n=ey+3e, + 3%+ -+ 3Fe,

for some k, wheree; = —1,0,0r1,i=0,1,. .., k.

*17. Hexadecimal notation (base 16) uses the digits A, B, C, D, E, and F for
decimals 10, 11, 12, 13, 14, and 15.
(a) Convert 3073, 53456, 49370, and 45278 to hexadecimal.
(b) Convert CAB, BOB0, DEAF, and AIDE to decimal.
(c) Is there a longer hexadecimal word than DEFACADED?

18. To convert from decimal to binary, it is convenient to convert first to octal,
and then replace each octal digit with its binary representation. For exam-
ple, 1929,, = 36115 = 11,110,001,001; and 10,111,010,100, = 2724, = 1492,,.
Show that this process works in general.

19. Another method of representing integers is in the factorial notation:

(dedg-y- - di)i=d, 11+ dy- 2!+ - +d k!, O0=<d =i

* (a) Write (22110). and (242120), in base 10.

* (b) Write 920 and 1848 in factorial notation.

1 (c) Prove that every positive integer has a unique representation in facto-
rial notation.

20. Find a base b in which 45, and 55, are squares of consecutive integers.
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Duodecimals

In this section, which has no new mathematical content and can be
omitted without serious loss, we will take a close look at arithmetic in
base 12. In doing this, we will reexamine the familiar processes of
addition, subtraction, multiplication, and division in an unfamiliar set-
ting. After completing the exercises, you should realize how expert you
really are at computation (in the base 10), and what enormous labor it
takes to become quick at arithmetical operations. We all worked hard
in the third grade. Any base would serve as well as 12 to give practice,
but some parts of arithmetic—notably decimals—are nicer in base 12
than they are in base.10. Besides, there is a good deal of twelveness in
everyday life: items are measured by the dozen and gross, there are 12
months in the year, 12 inches in a foot, half a dozen feet in a fathom,
two dozen hours in the day, and 30 dozen degrees in the circle. The
reason for this abundance of twelves is the easy divisibility of 12 by 3,
4, and 6; we want to make such divisions much more often than we
want to divide things by 5. Counting by tens is the result of a really
unfortunate accident. How much better ordered the world would be if
we had six fingers on each hand! Because we don'’t, it is unlikely that we
will ever abandon counting by tens, even though counting by dozens is
manifestly better. But there is a Duodecimal Society of America that

114,
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devotes itself to educating the public in preparation for the day when
the change is made. Although the public is still largely untouched, the
Society looks forward to that day with faint but unquenchable hope.
In order to count by dozens, we need two new digits to represent 10,
and 11,,. From now on in this section, all numbers will be
duodecimals —that is, written in base 12, unless otherwise indicated
with a subscript. The settled notation among duodecimalists for 10,
and 11,, seems to be x and ¢, the Greek letters chi and epsilon. But they
are pronounced ‘‘dec’’ and ‘‘el.”” Thus duodecimal counting goes

1)293,4:5,6;778,9,X,5,10,11,. ..,1X,1€,20,. - ey
30, ... ,40, . .. ,x0, . ..,€0,. .. ,100,. . ..

We need names for duodecimal numbers. The Duodecimal Society
advocates ‘‘do’’ (from dozen) for 10 and ‘‘gro” for 100, so that, for
example, 15 is *‘do five’’ and 327 is **3 gro 2 do 7.”” Unfortunately, the
Society’s names for larger multiples of a dozen do not fall naturally
from the lips: 1000, 10000, 100000, and 1000000 are, respectively, mo,
do-mo, gro-mo, and bi-mo, so that 220110 would have to be read ‘2
bi-mo, 2 gro-mo, mo, gro, do.”” But if you want to call 1y and 5e
‘‘decteen’’ and ‘‘fifty-el’’ instead of ‘“do dec’” and ‘‘five do el,”’ proba-
bly ‘only the most fanatical duodecimalists would object.

Addition of duodecimals is not hard if we remember to carry one
whenever we sum to a dozen. Here is the addition table for six:

6 6 6 6 6 6 6 6 6 6 6 6
1 2 3 4 5 6 7 8 9 x e 10
€

7 8 9 x 10 11 12 13 14 15 16
and here are some summations:
5 31 123 XXX
4 41 456 €€e
3 15 789 XEX
2 9 xe0 €xe

12 94 2036 3996
Exercise 1. Calculate 9 + 4, x + €, €l + 1¢, and 16 + 19 + 37.
Although we can carry the addition tables in our heads without too

much trouble, we need a multiplication table to look at when we
multiply, just as when we learned to multiply in the base y.
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Duodecimal Multiplication Table
2 3 4 5 6 7 8 9 x € 10

4 6 8 x 10 12 14 16 18 1y 20
6 9 10 13 16 19 20 23 26 29 30
8 10 14 18 20 24 28 30 34 38 40
x 13 18 21 26 2 34 39 42 47 50
10 16 20 26 30 36 40 46 50 56 60
12 19 24 2 36 41 48 53 5¢ 65 70
14 20 28 34 40 48 54 60 68 74 80
16 23 30 39 46 53 60 69 76 83 90
18 26 34 42 50 5¢ 68 76 84 92 X0
Ix 29 38 47 56 65 74 83 92 x1 €0

mXxX VoA nhAWLWN

Exercise 2. Verify that the x-times table is correct.

With the aid of the table, multiplication is no problem. For example,

34 1755 XX
5 X €€
148 14262 9¢2
92

X912

* Exercise 3. Calculate 14-2, 14-3, and 9 x-e€.

With enough practice, we could absorb the entries of the table and
learn to do without it; eventually, *‘9 times 9’ would produce “‘6
do 9’ purely by reflex.

Division is slightly harder, even with the aid of the table, because
lack of experience may lead us to choose the wrong digit in a quotient.
It takes practice to be able to see at a glance how many x5’s there
are in 763.

Exercise 4. How many are there?

Here are some worked-out divisions:

5) 456 (x8 22) 456 (20 31) 4159 ( 140
42 44 31
36 16 105

34 104
2 19
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Exercise 5. Calculate 1966/6 and 1111/5.

In duodecimals, 1/3 and 1/6 have terminating expansions—1/3 =
4/10 = 4 and 1/6 = 2/10 = .2—and this is pleasanter than the case in
base x. The expansion of 1/5, however, does not terminate: long
division shows that 1/5 = .24972497 . . . . We will signify the repeat-
ing part of a repeating decimal by putting a bar over it; thus we will
write 1/5 = .2497. We will continue to call such things ‘‘decimals,”
even though some other name, perhaps ‘‘dozinals,”’ would be more
appropriate.

Exercise 6. Calculate the decimal representation of 1/7.

Here is a table of reciprocals up through one decth and one elth.
n | 2 3 4 S 6 7 8 9 X €

*

1/in |.6 4 3 2497 2 .186y35 .16 .14 .12497 .1

Half of these terminate, and one elth, like one-ninth in base x, has
a particularly simple repeating part.

To convert from decimals to rational numbers, we use the same
principles as in base x. For example, .25 = 25/100. This is a fraction
in lowest terms, though your reflexes may tell you differently;
actually, the numerator is a prime. Repeating decimals can be con-
verted to fractions in the usual way. For example, let N = .6666 . . . .
Then 10N = 6.6666 . . . ,s0 10N — N = 6. Thus eN = 6, and N = 6/¢;
this is a fraction in its lowest terms.

Problems
1. Calculate 3141 + 5926 and 3141 - 5926 without changing to another base.
2. Calculate 3141/5926 to three places without changing to another base.
3. Write 7/13 as a decimal and .2929. . . as a rational number.
4. Write 8/14 as a decimal and .3030. . . as a rational number.
5. Which would you rather have, $4¢.€6 or $(59.95),?
6. Show that the last digit of a square is 0, 1, 4, or 9.
7. Show that the last digit of x", n =2, 3, . . .
(@) is0Oifx=6
(b) isdifx =y

(c) isx ifx =3,5,7,8, ore and n is odd.
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8. Show that any integer whose last digit is 3, 6, 9, or 0 has 3 for a factor.

0

m X

10.

Show that any integer whose last digit is 4, 8, or 0 has 4 for a factor, and
that any integer whose last digit is 6 or 0 has 6 for a factor.

. Show that any integer whose digits sum to a multiple of € is divisible by e.

. The Duodecimal Society of America also advocates the do-metric system

of weights and measures: 1000 yards to the mile, 10 ounces to the pound,

and 10 flounces to the pint. The Society relates distance, weight, and

volume by requiring that a cubic yard hold 1000 pints of water, which

weighs 1000 pounds. If we keep the yard as it is now, how do the do-metric

mile, pint, and pound compare to the ordinary mile, pint, and pound?

(a) How many days are there in the year?

(b) What other three-digit numbers have the same property—that is,
didydy = ((d; + 1)d,d,),?

(c) Are there any four-digit numbers with this property?
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Decimals

Decimals are very handy for calculation. If asked to add 2/5, 1/3, 3/10,
4/7, 5/9, and 3/8 together, any sensible calculator would change the
fractions to decimals first. Decimals are so handy that the metric sys-
tem, which is based on decimals, is replacing our traditional system of
measurement, which is partly decimal, partly binary, partly duodeci-
mal, and partly arbitrary.

Decimals seem so natural to us that it is easy to forget that they were
a human invention and not something that was handed down to us from
above, engraved on stone tablets. Our present system of notation,
which we take for granted, was arrived at only after a long evolution,
still going on recently. The first author whose works we could read
today without being puzzled by the notation is Descartes, who wrote in
the first half of the seventeenth century, and even he wrote xx instead
of x? and « for =. The great period for evolution of notation was the
sixteenth century, when each author of a book would use his own
personal notation (there was no traditional notation, since printing had
been invented only the century before). The fittest notations survived,
and decimals, invented by Simon Stevin in the last half of the 1500’s,
was one of them.

Some fractions have simple decimal expansions (1/8 = .125); others

119
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are not as simple, but still tolerable (1/3 = .333 . . .); and others are not

simpleatall (1/17 = .0588235294117647 . . .).Inthis section wewill see

which fractions are simplest, and we will find a way of determining how

long the repeating part of a repeating decimal is without having to carry

out the actual calculation of the decimal. In doing so, we will use

nothing deeper than the division algorithm and some congruences.
We will denote

by
didyds .. -

A bar over part of a decimal will indicate that this part repeats indefin-
itely. For example,

0147 = .0147474747 . . . and 13 = 3.
Exercise 1. Write .0147 as a rational number.

Exercise 2. Write 7/41 as a decimal with a bar over its repeating part.

Let us make a table of the decimal expansions of the reciprocals of
the first few integers and see if we can notice any pattern in them. A
zero in the period column means that the decimal terminates.

n 1/n  Period n l/n Period
2 5 0 16 .0625 0
3 3 1 17 .0588235294117647 16
4 .25 0 18 .05 1
5 .2 0 19 .052631578947368421 18
6 .16 1 20 .05 0
7 .142857 6 21 .047619 6
8 .125 0 22 .045 2
9 1 1 23 .0434782608695652173913 22

10 .1 0 24 0416 1

11 .09 2 25 .04 0

12 .083 1 26 .0384615 6

13 .076923 6 27 037 3

14 0714285 6 28  .03571428 6

15 .06 1 29  .0344827586206896551724137931 28
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The integers in the table whose decimal reciprocals terminate are
2,4,5,8, 10, 16, 20, 25,

and one thing these numbers have in common is that they are all of
the form 225° for some nonnegative integers a and b. We might guess
that the decimal expansion of the reciprocal of any number of this
form terminates. The next three such numbers are 32, 40, and 50, and

1/32 = .03125, 1/40 = .025, 1/50 = .02

all terminate. In fact, this guess is right.

Theorem 1. If a and b are any nonnegative integers, then the decimal
expansion of 1/2?5° terminates.

Proof. Let M be the maximum of a and b. Then
10M(l/205b) = 2;11—(15;11—17
is an integer—call it n. Clearly, n < 10%. Thus

1 _ n_,
2956 ~ 10¥

so the decimal expansion of 1/275% consists of the digits of n, perhaps
preceded by some zeros.

* Exercise 3. Calculate M for 16, 20, and 25, and compare with the

table to see that it gives the correct length of the expansion.

" Exercise 4. How many places are there in the expansions of 1/128,

1/320, and 1/800?

The converse of Theorem 1 is also true.

Theorem 2. If 1/n has a terminating decimal expansion, then n = 275°
for some nonnegative integers a and b.

Proof. Let the terminating decimal expansion of 1/n be
l/n = .d1d2 e dk
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Then
ln = (d, 10570 + do 10572 + - - - 4 di)/10%.
Call the integer in parentheses m. Then the last equation is
1/n =m/10% or mn = 10~

The only prime divisors of 10* are 2 and 5, and so the only prime
divisors of n are 2 and 5. This proves the theorem.

Theorems 1 and 2 completely take care of terminating decimals.
Among the expansions in the table that do not terminate are some
with long periods, including n = 17, 19, 23, and 29. In each case,
n is a prime and the period of 1/n is n — 1. But not all primes p have
period p — 1 for their reciprocals: 1/13 has period 6, not 12, and 1/11
has period 2, not 10. As a first step in investigating the lengths of
the periods of reciprocals, we prove

Theorem 3. The length of the decimal period of 1/n is no longer than
n—1.

Proof. Let ]r be such that 10 <n < 10*'. Then using the division
algorithm repeatedly, we have

107 = din + ry, 0<r, <n,

le=dgn + rq, 05r2<n,
(1) 107‘220'371 +I’3, OSr3<n,

10k = dysant + riess 0=rpy<n,

Note that each d is less than 10, because fork =2, 3, . . . ,
din = 10r,_; —re < 10r,_; < 10n,
and
din = 1071 —r < 10°*1 = 10- 10 < 10n.
If we divide both sides of the last equation in (1) by 10, we get
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(2) I'k/n. = dk+1/10 + rk+1/10n.

If we divide both sides of the first equation in (1) by 10*'n and
apply (2) over and over, we get
ln =d/104 + ry/n 1041
= d/107" + d,/10%2 + ry/n10+2
=d /10 + dy/10°%2 + d3/10°43 + po/n 1073

=d /1077 + dy/1072 + dy/10+3 + d /107 + -~ -,

and thus d,, d,, d;, . . . are the digits in the decimal expansion of
1/n. For example, for n = 7 we have

10=1-7+3,

30=4-7+ 2,

20=2-7+6,

60=28-7+4,

40=5-7+5,

50=7-7+1,

10=1-7+3,

s

and so the decimal expansion of 1/7 is .142857.

Each of the remainders r;, ¥, . . . is one of the n values 0, 1,
2, ... ,n—1. Hence, among the n + 1 integers ry, F2, . . - » Fnt1s
there must be two that are equal. If you put n + 1 objects in n boxes,
one box will contain two objects. If r; =r,, then it follows from (1)
that dyyy = dsyy, dyig =dje, - - ., and the decimal repeats, with
period no greater than n.

“ Exercise 5. Apply the division algorithm to find the decimal expansion

of 1/41.

If n is relatively prime to 10, we can get more information about
the period of Vn.

Theorem 4. If (n, 10) = 1, then the period of l/n is r, where r is the
smallest positive integer such that 10" =1 (mod »).

Proof. We first note that the integer r exists.- The least residues
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(mod n) of 1, 10, 10%, 103, . . . , 10! may assume only the values
1,2,3,...,n—1, because no power of 10 is divisible by n. Now
we have n objects to be put in n — 1 boxes, so one box contains two
objects: there exist nonnegative integers a and b, a #b and both
smaller than n, such that 10° = 10° (mod n). Dividing the congruence
by the smaller power of 10, which is possible since (z, 10) =1, we

getr.
Since 10" = 1 (mod n), we know that
3) 100 — 1 =kn

for some integer k. Written in the base 10, & has at most » digits
(because & < 107). Let

k = dr—!.dr—Z M dldo = dr—l 10"_.L + dr_2101—2 + -+ dl 10 + do,

where 0 = d, < 10fork =0,1, . . . ,r. Thenfrom (3)
»1_ - k _ dr_1dry - dy . 1
n 100-1. 107 1-10"
=(droyd,—g - - do)(1+ 1077+ 10727 + - - +)
= dod., - dy
This shows that the period of 1/n is at most r. (The sequence
123123123123. . .

repeats after every ninth digit, but its period is three.) We must show
that the period is no smaller than ». We can do this by using the
above argument backward. Suppose that the period of 1/n is s: that is,

n = €5_165_9 """ €9
for some integers ey, €;, . . . , es_;. Then
;1 = (51653 - €1 + 107 + 1072 + - -+)
— 65—188—2 "'eo R ].
10¢ 1—-10"¢
— ei_les_g €y .
10 — 1

If we let the integer in the numerator be k', we have nk’ = 10° — 1, so
10*=1 (mod n). Since r was the smallest positive integer such that
107 =1 (mod n), this shows that s =r.

For an example, if n is 21, we have
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n I 1 2 3 4 56
10" (mod 21) 10 16 13 4 19 1

so 10% = 999999 is divisible by 21, and in fact, 999999 = 21-47619. Thus

47619 _ 47619 (1 _ 1 >
999999 1000000 1 —.000001
(.047619)(1 + (.000001) + (.000001)2 + - --)
- = .047619047619047619 . . . .

1 _
21~

“ Exercise 6. Apply Theorem 4 to find the period of 1/41.

Unfortunately, there are no general rules for looking at an integer and

discovering what the number r is. Even among the primes, those for

— whichr =p — 1(7,17,19,23,29,. . .)are scattered in a pattern no one
has yet been able to decipher.

So far we have considered fractions with numerator 1 only. But the
general rational number is no more difficult, and the proof of Theorem 4
- carries through for fractions c¢/n, where (¢, n) = 1. Also, if a fraction is

divided by 2 or 5, its period is not changed. Summarizing, we have

Theorem 5. If n# 2?5 and (c, n) = 1, then the period of the decimal
— expansion of ¢/n is r, the smallest positive integer such that

— 100= 1 (mod n,),
— where
— . n =295,

— and (n,, 10) = 1.

Problems

— * 1. Find the periods of the expansions of 1/66, 1/4608, and 1/101.
2. Find the periods of the expansions of 1/666, 1/925, and 1/1001.

3. Find the smallest positive integer r such that 107 = 1 (mod n)ifn is 33 or
"' 37.

— 4. Find the smallest positive integer  such that 10" = 1 (mod n) if n is 42 or
45.

S. Prove that if the decimal expansion of 1/n in the base b, that is,
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10.

11.

12.

14.

15.

Section 15

Un=d/b+ dyfb* + dy/B® + - -+, 0=4d,<b,

terminates, then every prime divisor of n is a divisor of b.

. Prove that if every prime divisor of n is a divisor of b, then the decimal

expansion of 1/n in the base b terminates.

. Which of the reciprocals of 13, 14, . . . , 25 have terminating decimal

expansions in the base 12?

. Prove that if (n, b) = 1, then the period of the decimal expansion of I/ in

the base b is the smallest positive integer such that 4" = 1 (mod n).

. In the base 2, whatis the period of the decimal expansion of (a) 1/3, (b) 1/5,

(c) 177, (d) 1/9, (e) /11?7
Calculate the decimal expansions in the base 2 of (a) 1/3, (b) 1/5, (c) 1/9.

In the base 12, what is the period of the decimal expansion of (a) 1/7, (b)
1/11, (¢) 1/17?

Calculate the decimal expansion in the base 12 of (a) 1/13, (b) 1/14.

. Calculate the following decimal expansions:

(a) 1/9? m the Hase 10.
(b) I/7* in the base 8.
(c) 1/6* in the base 7.
(d) Guess a theorem.
(e) Proveit.

Show that

-]

E J-rlatirz

n=1
is irrational.
Let (.a;a,a; . . .) be defined to be

a/ll + a2 + a3 + - - -,

with 0 = g; = (i — 1)! for each i. Does every rational number have a ter-
minating ! expansion? Is it unique?
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Pythagorean Triangles

More than 3500 years ago the Babylonians knew that the triangle
whose sides have length 120, 119, and 169 is a right triangle. They knew
many other such triangles too, including tkose with sides

4300, 4601, 6649,
360, 319, 481,

6480, 4961, 8161,
2400, 1679, 2929,
2700, 1771, 3229;

they probably used them as a sort of table of trigonometric functions.
They had observed, experimentally, that ifx and y denote the lengths of
the legs of a right triangle and z denotes the length of its hypotenuse,
then x2 + y? =z2. However, it was not until the time of Pythagoras,
some 2500 years ago, that it was proved that x? + y? always equals z2,
and the result changed from a mere observation like the Law of Gravity
(which may be repealed tomorrow for all we know) to an eternal
theorem that will never need revision and will never be shown to be
false. There will come a day when the works of Shakespeare will be
completely forgotten, but the Pythagorean Theorem will still be true:
the works of humankind disappear, but mathematical truth endures! It
is another reason for studying number theory.

127
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Many proofs of the Pythagorean Theorem are known, and Loomis
[8] has compiled more than 400 of them. An Indian proof consisted of
the diagram below with the one word: Behold! It is indeed possible to
behold that the area of the big square is (x + ¥)? =x2 + 2xy +y2, and it
is also the sum of the areas of the small square and the four triangles,
22+ 4(12xy) = 22 + 2xy, so it follows that x2 + y% = z2.

y X

James Garfield constructed a proof before he was President of the
United States; mathematical knowledge is thus not a disqualification
for high office. A right triangle whose sides are integers we will call a
Pythagorean triangle. (Strictly speaking, the sides are not integers; they
are line segments whose lengths are denoted by integers, but no con-
fusion should arise.) The problem of finding all Pythagorean triangles
is the same as that of finding all solutions in positive integers of

€)) x4y =72

The ancient Babylonians could find some of the solutions; we will
determine them all. There is an immense literature on Pythagorean
triangles, and Schaaf [15] and Beiler [2] have references to some of it.

Note first that we may assume that x and y are relatively prime.
Suppose not: let x> + y> =z2 and (x, y) = d. Then d]z, and

ld ) + (yld ) = @/d)?,

and we also know that (x/d, y/d) = 1. This shows that any solution of (1)

' may be derived from a solution in which the terms on the left are
relatively prime, by multiplication by a suitable factor. Thus when we
find all solutions of x2 + y? = z2 with (x,y) = 1, we will be able to find all
solutions of x? + y2 = z2.



Pythagorean Triangles 129

- * Exercise 1. If (x,y) =1 and x2 + y? = z2, show that (y,z) = (x,z) = 1.

We will call a solutionx =a,y =b,z =c ofx? + y2 =z2 in whicha, b,
- and ¢ are positive and (a, b) = 1 afundamental solution. From Exercise
1 it follows that if a, b, ¢ is a fundamental solution, then no two of a, b,
¢, have a common prime factor.

Lemma 1. If a, b, ¢ is a fundamental solution of x2 + y2 =z2, then
_ exactly one of ¢ and b is even.

Proof. The integers a and b cannot both be even in a fundamental
solution.

* Exercise 2. Why not?

Nor cana and b both be odd. Suppose that they were. Thena? = 1 (mod
— 4) and b2 = 1 (mod 4). Thus

— ct=qa?+b*= 2V(mod 4,

o which is impossible. The only possibility left is that one of a and b is
even and the other is odd.

— Corollary. If a, b, c is a fundamental solution, then ¢ is odd.

Proof. a*+ b*= 1 (mod 2).

Before we proceed to derive an expression for all the fundamental
- solutions of (1), we need to. prove

Lemma 2. If ¥r? = st and (s, t) = 1, then both s and ¢ are squares.

Proof. Write out the prime-power decompositions of s and ¢:

S =DpiPet Pt
t =qfqk g
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From (s, t) = 1, it follows that no prime appears in both decomposi-
tions. Because of the unique factorization theorem, the prime-power
decomposition of > can be written

rz =8t :plenpzeg P pkekql.ﬂqu: P qu],

and the p’s and ¢’s are distinct primes. Since r? is a square, all of
the exponents e,, €3, . . . , €, fi, fo» - - . , f;are even. Thus s and ¢
are squares.

Exercise 3 (optional). Prove Lemma 2 by induction on r as follows.
The lemma is trivially true for »r =1 and r =2. Suppose that it is
true for r <n — 1. Note that n has a prime divisor p, and p|s or
D |t, but not both. Also, p? ln”. Apply the induction assumption to n/p.
~ " Note that it is impossible to conclude from r? = st that s and ¢ are
squares if s and ¢ are not relatively prime. For example, 6* = 18-2, but
neither 18 nor 2 is a square.

The next lemma gives a condition that fundamental solutions of (1)
must satisfy.

Lemma 3. Suppose that a, b; ¢ is a fundamental solution of x2 + y* =z?2,
and suppose that a is even. Then there are positive integers m and n
withm > n, (m,n) =1 and im ¥ n (mod 2) such that

a =2mn,
b=m*-n?,
¢ =m?+n

(Note that we lose no generality in assuming that a is even. Lemma 1
tells us that exactly one of @ and b is even, so we may as well call the
even member of the pair a, b by the name of a.)

Proof. Since a is even, a =2r for some r. So, a?=4r*;, from
a® =c? - b?follows

(2) 4r% = (c + b)(c - b).

We know that b is odd, and from the Corollary to Lemma 1, we know
that ¢ is odd too. Thus ¢ + b andc — b are both even. Thus we can put

3) c+b=2s and c—b =2t



Pythagorean Triangles 131

Then

@ c=s+t and b=s—1t.

Substituting (3) into (2), we get 4r2 = (25)2¢), or
r? =st.

If s and ¢ are relatively prime, we can apply Lemma 2 and conclude that
s and 7 are both squares. In fact, s and ¢ are relatively prime, as we now
show. Suppose that d |s and d |¢. From (4) it follows thatd |b and d |c.
But from Exercise 1, we know that b and ¢ are relatively prime. Hence
d=+1and (s, f) = 1. Lemma 2 says that

s=m" and t =nt
for some integers m and n, which we may assume to be positive. Thus
a?=4r? =4st = 4m?n?
ora = 2mn. From /4),

=5+t =m?+ n?,

b=5s—t=m?~n2

_ Having established the last three equations, we need now only estab-

lish that m >n, (n,n) =1, and m #n (mo,éd 2) to complete the proof.
The inequality follows because b is part of 4 Tundamental solution and
hence positive.

Exercise 4. Suppose that d |m and d |n. Show that d |a and d |b. Con-
clude that (m, n) = 1.

Exercise 5. Suppose that m = = 0 (mod 2). Show that a and b are
both even, which is impossible.

Exercise 6. Suppose thatm = n = 1 (mod 2). Show again thata and b
are both even.

Exercises 4, 5, and 6 have completed the proof of

Lemma3. Forexample, 33, 56, 65 is afundamental 65
solution, since 1089 + 3136 = 4225, and fromr? = 36
(56/2)* = 282 = 7*-4> we getm = 7andn = 4. They

are the right values, sincem? —n?2 =49 — 16 = 33

and m? + n? =49 + 16 = 65. 33
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We have shown that ifa, b, ¢ is a fundamental solution, thana, b, and
c satisfy the conditions of Lemma 3. It is also true that ifa, b, ¢ satisfy
the conditions of Lemma 3, then a, b, ¢ is a fundamental solution of
x? +y? =z2 We prove this in

Lemma 4. If

a =2mn,
b =m?—n?,
c =m? + n?,
then a, b, c is a solution of x% + y2 =z2. If in addition, m > n, m and

n are positive, (n, n) =1, and m =n (mod 2), then a, b, ¢ is a
fundamental solution.

Proof. To see that a, b, c is a solution is a matter of computation:
a? + b? =2mny + (m?® — n2)?
=4m3n? + mt* - 2m2*n®* + n* = m* + 2m?n® + nt
= (m* + n2)? = c2.

It remains to show that (m, n) =1 and m=n (mod 2) imply that
(a, b)=1. Suppose that p is an odd prime such that p[a and p|b.
From c2 =a?+ b? it follows that p|c. From p|b and p|c it follows
that p| (b + ¢) and p| (b — ). But

b+c=2m? and b —c=-2n%

So, p|2m2 and p|2n2. Since p is odd, this implies that p[mZ and
p|n?, and hence that p|m and p|n. Since m and n are relatively
prime, this is impossible. The only way in which a and 4 could fail
to be relatively prime is for both to be divisible by 2. But b is odd
tecause b = m? — n?, and one of m, n is even and the other is odd.
Thus (a, b) =1, and because m > n, b is positive. Because m and n
are positive, a is positive. Thus a, b, ¢ is a fundamental solution.

We restate Lemmas 3 and 4 as

Theorem 1. All solutions x =a, y =b, z=c to x? +y* =z%, where
a, b, ¢ are positive and have no common factor and a is even, are
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given by

a=2mn,
b =m?—n?,

c=m+ n?,

where m and n are any relatively prime integers, not both odd, and

m>n.

Here is a table of some fundamental Pythagorean triangles with small

sides:
m n a b c a* b? c?
©2 1 4 3 5 16 9 25
v 3 2 12 5 13 144 25 169
=4 1 8 15 17 64 225 289
2% 4 3 24 7 25 576 49 625
= “5 2 20 21 29 400 441 841
175 4 40 9 41 1600 81 1681
6 1 12 35 37 144 1225 1369
oy 2 28 45 53 784 2025 2809
Problems
* 1. There are eleven nonfundamental Pythagorean triangles with hypotenuses

*9,

10.
11.

less than 50: find them.

. Find a fundamental Pythagorean triangle with hypotenuse 265.
* 3.

. How many Pythagoreah triangles (fundamental or not) can you find with

Find a fundamental Pythagorean triangle with leg 100.

hypotenuse 1105?

. If (@, b) = d and a? + b* = c?, show that (a, ¢) =(b,c) =d.
. If (a, b) =1 and ab =c", show that a and b are nth powers.
. If (a, b) =d and ab = c”, show that a/d and b/d are not necessarily nth

powers.

. Bhascara (ca. 1150) found a right triangle whose area is numerically equal

to the length of its hypotenuse. Show that this cannot happen if the triangle
has integer sides.

In all of the Pythagorean triangles in the table in the text, one side is a
multiple of five. Is this true for all Pythagorean triangles?

Show that 12 divides the product of the legs of a Pythagorean triangle.
Show that 60 divides the product of the sides of a Pythagorean triangle.
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12. Here is a quadrilateral, not a parallelogram,

*13.

14.

t1s.

16.

7.

18.

19.
20.

Section 16

with integer sides and integer area:

(a) What is its area?

(b) Such quadrilaterals are not common,; 2 20
can you find another?

(c) Could you find 1,000,000 more?

S5

Find all fundamental Pythagorean triangles whose areas are twice their
perimeters.

Find all fundamental Pythagorean triangles whose areas are three times
their perimeters.

Prove that 3, 4, 5 is the only solution of x? + y* = z* in consecutive positive
integers.

Show that the only Pythagorean triangles with sides in arithmetic progres-

sion are those with sides 3n,4n,5n,n =1,2,3,. ...

32442 =52 52 4+ 122 = 32 7 + 242 = 25%. 9 + 40° = 41°.

(a) Guess a theorem.

(b) Prove that the numbers in.(a) give the only Pythagorean triangles with
consecutive integers for one leg and a hypotenuse.

(a) Look in the table in the text and find two Pythagorean triangles with
the same area.

(b) Can you find two others with the same area?

(c) Prove that two Pythagorean triangles with the same area and equal
hypotenuses are congruent.

Show that n* + (n + 1f* = 2m? is impossible.

(a) 32 + 4* =52, 202 + 212 =292 119 + 120°> = 1692, To find another such
relation, show that if a* + (a + 1)* =c¢*, then

Ba +2c+ D*+ @Ba+2c+2)?*=(4a + 3c +2)%

by Ifat+(a+1)2=ct letu=c—a-1and v=(2a+ 1 —c)/2. Show
that v is an integer and that «(u« + 1)/2 = v%. This shows that there are
infinitely many square triangular numbers.



Section

Infinite Descent and Fermat’s
Conjecture

In the section on Pythagorean triangles, we found all of the solutions in
integers of x2 + y2 =z2. After disposing of that problem, it would be
natural to try the same ideas on an equation of one higher degree,
x4+ y3 =z3. The same ideas would not work, nor would any others;
there is no solution in integers of x®+y3=z3. There is one
exception—a solution in which one of the variables is zero. We will call
such a solution a trivial solution, treating it with the contempt it de-
serves. When we say ‘‘solution” in this section, we will mean ‘‘nontri-
vial solution.’’ In fact, no one knows any solution in integers to any of
the equations x” +y* =z" for n = 3. Fermat thought he had a proof
that x™ + y® =z™ has no nontrivial solutions when n = 3; he wrote a
note in the margin of his copy of the works of Diophantus saying that
he had a proof, but that the margin was too small to contain it. It is
almost certain that he was mistaken, but of course we cannot be cer-
tain. He may have had a proof. Or, he may have realized how deep the
proof must lie and wrote the comment to keep future generations of
mathematicians at work. Could he have been such a practical joker? It
is not likely: Fermat was a judge, and judges tend to be sober and not
given to pranks.

The statement ‘‘x™ + y* =z” has no nontrivial solutions if n = 3" is

135
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often called ‘‘Fermat’s Last Theorem’ —to distinguish it from the
theorem that bears his name (see Section 6), but a better name would
be Fermat’s Conjecture. An enormous amount of work has been de-
voted to it, but it is still not settled one way or the other. The conjecture
is known to be true for n < 25,000 and for many larger values of #, but
this is far from a proof. Before the First World War, there was a large
prize offered in Germany for a correct proof, and many amateurs of-
fered attempted solutions. It is said that the great number theorist
Landau had postcards printed which read, ‘‘Dear Sir or Madam:
Your attempted proof of Fermat’s Theorem has been received and
is herewith returned. The first mistake is on page , line
.”> Landau would give them to his students to fill in the missing
numbers. Even though there is no longer a prize for the solution, math-
ematical amateurs still attempt: proofs, and many convince themselves
that they have succeeded. They then try to convince mathematicians,
fail, and sometimes become quite bitter about what they think is a
conspiracy of mathematicians to keep them from getting the recogni-
tion due them. It is sad. Besides amateurs, many powerful mathe-
maticians have worked on the problem, and it may be that Fermat’s
Conjecture is forever undecidable one way or the other. There may
exist a solution of x* +y" =z" in numbers so large that no one could
ever find them. There are, after all, integers so big that the world could
not hold them if they were written out. If they take up that much room,
can they fit into the head of man?

The object of this section is to show that Fermat’s Conjecture is true
for n = 4, and in so doing, to illustrate Fermat’s method of infinite
descent. You might wonder why we avoid considering the case n = 3. It
turns out to be harder to show that x3 + y3® = z3 has no solutions than it
is to show that x* 4+ y* = z* has none, though it is also possible to apply
the method of infinite descent whenn = 3. We will prove

Theorem 1. There are no nontrivial solutions of

x*+yt =27

Note that this implies that there are no solutions of x* + y* = z%; if
a, b, c were a solution to that equation, we would have a* + b* = (¢?)?,
contrary to Theorem 1.
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Proof. We will apply Fermat’s method of infinite descent. Consider the
nontrivial solutions of x* + y* =z%2. We want to show that there are
none. We will suppose that there is one and deduce a contradjction.
Among the nontrivial solutions, there is one with a smallest value of z2.
Let c? denote this value of z2. There may be several solutions with this
same value of z; if there are, we will pick any one of them—it makes no
difference which. Call the solution that we pick a, b, c. The idea of the
proof is to construct numbers #, s, r that also satisfy x4 + y* =z2, with
t? < c?. Since c? was chosen as small as possible, it follows that the
assumption that there were nontrivial solutions was wrong. Hence there
are no nontrivial solutions. This method is no mere trick, but is quite
natural. It is very possible that Fermat one day set himself to the task of
finding solutions of x* + y* =z*; he may have applied various devices
to reduce the equation in the same way we reduced the equation
x? + y? =z2; and maybe he was surprised when the result of his efforts
was another equation of the same form, but with smaller numbers—
surprised and pleased too, because this allowed him to conclude that if
there was a solution, then there was another smaller solution, and then
another and another and another: an infinitely descending chain of so-
lutions. But since we may assume that x, ¥, and z are positive, this is
impossible. (On the other hand, Fermat may have sat down and
thought, ‘I will now apply my method of infinite descent to
x4+ y* =24"; history is silent on the subject.)

We suppose that we have a nontrivial solution a, b, ¢, with ¢? as small
as possible. We can suppose that a and b are relatively prime. Suppose
not. Then there is a prime p such that p|a and p|b, and hence p?|c.
Thus (alp)* + (bip)* = (c/p?)? provides a solution to x* + y* =z2 with a
smaller value of z2 than ¢2, and we have supposed this to be impossible.

* Exercise 1. Show that a and b cannot both be odd. (Consider a* + b* =

¢? modulo 4.)

Because (a, b) = 1, a and b cannot both be even, either. Thus one is
even, and look at b2 =m? — n? modulo 4. Remember that x?2 = —1
agree to call the even member of the pair a,b by the name of a. But now
we have a fundamental solution of x2 + y? = z? as defined in Section 16:

(a®)? + (b2)? = c?,

(a%, b?) =1, and a? is even and b? is odd. Hence, by Lemma 3 of
Section 16, there are integers i and n, relatively prime and not both
odd, such that
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a*=2mn,
1) b* =m? — n?,

¢ =m?+ n2.

Exercise 2. Show that n is even. (Suppose that n is odd and m is
even, and look at $* = m? — n? modulo 4. Remember that x?= —1
(mod 4) is impossible.)

Because n is even, it follows that 2 is odd. Put

n=2q.

Then from (1), a® = 4mgq, or
a\?
@ (%) =ma.

We would like to conclude that m and g are both squares. To do
that, we need, according to Lemma 2 of the last section, to show that
m and g are relatively prime.

Exercise 3. Show that (m, g) = 1. (Suppose not, and deduce that
(m, n)# 1.)
So, there are integers ¢t and v such that

m=p? and q =1

Exercise 4. Verify that ¢ and v are relatively prime. (Suppose not, and
deduce that (m, q)# 1.)

Exercise 5. Note that ¢ is odd. (Suppose not, and deduce that m
is even.)

So far, we have found out a good many things about a, b, and c.
We need more yet. We start with the obvious observation

n? + (m* — n? =m?.
Substituting into this the various facts we know, namely
n=2q=2v%, m? — n®* = b2, m= £,
the equation becomes
(202)2 + b2 = (12)2,
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so we have another Pythagorean triangle. Is 202, b, > a fundamental
solution? It is if 2¢v? and b are relatively prime, and they are.

* Exercise 6. Supply the reasons for the following implications:
ifp|2v2andp|b, thenp|n and p|b,
if p|n and p|b, then p|n and p|m,
if (m, n) =1, then (202, b) = 1.

With 2% even, we have a fundamental solution of x* + y? = 2%, so

we can apply Lemma 3 of the last section to show that there are
integers M and N, with (M, N)=1 and M # N (mod 2), such that

2v® = 2MN,
3) b =M - N2,
12 = M? + N2

Thus we have v2=MN and (M, N) = 1. The product of two rela-
tively prime integers is a square if and only if both integers are squares
(Lemma 2 of the last section), so there are integers r and s such that

M=r and N =52,
From the third equation in (3), we have
7= 2?2 + (s2)2,

or

rt+ 5t =12,
Here is another solution of x* + y* = z2. It has the property that

PrP=m=m?<m®+n®=c=c?

which is impossible, because ¢? was chosen as small as possible. This
contradiction proves the theorem.

* Exercise 7. Why m? <m? + n®? Why not just m?® < m? + n??

Here is another éxample of the method of infinite descent. Suppose
that there are positive integers a and b such that

@) \G:%,

where the fraction is in lowest terms, so that (a, ) = 1. From (4),
a® = 3b%, so
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3@ —b)? =3a2 — 6ab + 3b2 =9b? — 6ab +a’ = (3b —a)?,

from which we get

)

\3-3b-a,

a—>b

Since 1< V3 <2, from (4) we have b<a<2b or 0<a-b<b.
"Thus the denominator in (5) is smaller than the denominator in (4), so
we can start with a fraction equal to V3 and descend through infinitely
many others with smaller and smaller denominators. Since this is im-
possible, we conclude that V3is not equal to a quotient of two integers,
and so is irrational.

This process can be reversed to ascend to better and better rational
approximations to V3. If we start with 3/2 and put (36 —a)/
(@ —b)=3/2, we get a/b = 9/5. Continuing, we get the sequence 3/2,
9/5, 12/7, 33/19, 45126, . . . or 1.5, 1.8, 1.714, 1.737, 1.731, . . .,
converging to V3 = 1.732050808. . . .

Problems

-+

> ow

¥

1.

A W

Use the method of the text to show that V¥ is irrational if  is not a perfect
square.

Why does the method of the text fail to show that VY is irrational if n is a
perfect square?

Does x® + y® = z% have nontrivial solutions?

Use the method of infinite descent to show that x® + 3y3 =973 has no
nontrivial solutions.

. Generalize: does x® + py® = p?z® have nontrivial solutions?
. Generalize: does x* + py* + p*z* = p*w* we have nontrivial solutions?

n—2.

Generalize: does x" + px;" + p>3" + - - - + p**,.," =p"~x," have non-

trivial solutions?

8. Show that x* + y* + z? = 2xyz has no nontrivial solutions.

9. For what values of k does the method used in solving Problem 8 show that

10.

there are no nontrivial solutions to x? + y? + z* = kxyz?

Show that there are no nontrivial solutions to x* + y* = x?y* or x* + y* + 22
— 2,2
= x**.
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Sums of Two Squares

Among the integers from 1 to 99, the following 57 are not representable
as the sum of two squares of integers:
3 6 7 11 12 14 15 19 21 22 23

24 27 28 30 31 33 35 38 39 42 43

44 46 47 48 51 54 55 56 57 59 60

62 63 66 67 69 70 71 75 76 77 78

79 83 84 86 87 88 91 92 93 94 95

9% 99

But the remaining 42 are:

1 2 4 5 8 9 10 13 16 17 18
20 25 26 29 32 34 36 37 40 41 45
49 50 52 53 58 61 64 65 68 72 73
74 80 81 82 85 89 90 97 98

It would be an exercise of your inductive powers to look at these lists
and, in the spirit of the scientific method, try to formulate a hypothesis
that would explain the presence of a number on its list and which could
be used to predict results for numbers greater than 99. There is a fairly
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simple property (other than not being representable as a sum of two
squares) that the numbers in the first list share. It is not to your dis-
creditif you cannot observe what it is, since probably only one mind in
a million would have the power and training necessary to see it; but
once one mind sees it, others can understand it, see why it is so,
appreciate it, and apply it. It is

Theorem 1. n cannot be written as the sum of two squares if and only if
the prime-power decomposition of n contains a prime congruent to 3
(mod 4) to an odd power.

Proof (of the ‘‘if*’ part). Suppose that p is a prime, p=3 (mod 4),
which appears in the prime-power decomposition of» to an odd power.
That is, for some e =0, p***!|n and p?**/n. Suppose that n = x* + y?
for some x and y. We will deduce a contradiction—namely that —1 is a
quadratic residue (mod p). Let d = (x, y), x, =x/d, y, =y/d, and n, =
n/d*. Then

(1) x*+yr=n and Ly =1L

If p7 is the highest power of p that divides d, then n, is divisible by
p*~¥*1_ and this exponent, being odd and nonnegative, is at least one.
Thus p|n,, and if p|x,, it follows from (1) that p|y,. But (x;, y,) = 1, so
plx,. Hence there is a number u such that

x,u =y (mod p).
Thus
) O=n=x2+y2=x*+ (ux;=x2(1 + u*)}mod p).
Since (x,, p) = 1, x, may be cancelled in (2) to give

1 +u®=0 (mod p).

This says that —1 is a quadratic residue (mod p), which is impossible,
since p= 3 (mod 4). Hence n = x* + y? is impossible, and the easy part
of the theorem is proved.

The rest of Theorem 1 (the *‘only if’’ part) is harder. We will need

four lemmas.

Lemma 1. (a® + b*)(c* + d?) = (ac + bd)* + (ad — bc)? for any integers
a, b, ¢, and d. :

Proof. Multiply it out.
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The result shows that if two numbers are representable as sums of
two squares, then so is their product. Rather than ‘‘n is representable
as the sum of two squares of integers,”” we will say *‘n is represent-
able’’ for short.

Lemma 2. If n is representable, then so is 4%x for any k.

Proof. If n =x* +y?, then k*n = (kx)? + (ky)*.

Lemma 3. Any integer n can be written in the form

n=kp;ps - * " pr,

where k is an integer and the p’s are different primes.

Exercise 1. Convince yourself that this is so by considering the prime-
power decomposition of 7.

A's an example of the application of Lemmas 1 and 2, we can get a
representation for 260 = 22-5-13 from the representations
S5=22+12 and 13 =732 +22,
From Lemma 1,

65 =513 = (22 + 13)(3 + 22)
=Q3+12°P+ (22137 =8+ 12,

Hence

260 =22-65 = (8-2* + (1-2)* = 16% + 22,
* Exercise 2. Write 325 as a sum of two squares.

Exercise 3. If the prime-power decomposition of » contains no prime p,
p =3 (mod 4), to an odd power, then note that

n=kppy--'p, or n=2U'"Ppy--p,

for some k and r, where each p is congruent to 1 (mod 4).

Exercise 3 and Lemmas 1 and 2 show that to prove the rest of
Theorem 1, it is sufficient to prove
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Lemma 4. Every prime congruent to 1 (mod 4) can be written as a sum
of two squares.

Proof. Theidea of the proofiis this: if p= 1 (mod 4), then we show that
there are integers x and y such that

x2+y*=kp

for some integer k, k =-1. If k > 1, we then construct from x and y new
integers x, and y, such that

x*+y:=kp

for some k,, with k; <k. This is the step that proves the lemma, be-
cause if k&, > 1, we repeat the process to get integers x, and y, such
that x,2 + y,> = k,p with k, <k,. If we keep on, we will get a descend-
ing sequence of positive integers, k > k; >k, > - -+, which cannot be
infinite: it must eventually reach 1. When it does, we have a represen-
tation of p as a sum of two squares.

First we show that we can find x and y such that x* + y2 =kp for
some k, k= 1. Since p =1 (mod 4), we know that —1 is a quadratic
residue (mod p); hence there is an integer # such that > = —1 (mod p).
That is, pl(u2 + 1), or

uw*+1=kp

for some k, kK =1. Hence x? + y®> = kp always has a solution for some
k, k= 1; in fact, we can take y = 1. For example, if p =17, we have
42+ 12=117; if p=29, 122+ 1* =5-29. The number u can be
found by trial (we can write kp — 1 fork =1, 2, . . . , and continue
until we come to a square), or we can use the fact that

((252)1) = -1 moa

The last congruence (which follows from Wilson’s Theorem) gives a
construction for u: a long one, perhaps, but one which guarantees a
result.

We now show how to construct x; and y,. Definer and s by

(3) r=x (modk), s=y (mod k), —%<r£%,— %<s£%-

From (3),
P2+ s = x% + y%* (mod k).

But we had chosen x and y such that x* + y* =kp. Hence



Sums of Two Squares 145

r2v+ s*= 0 (mod k),
or
4 rr+st=kk
for some k;. It follows from (4) that
(2 + 1) + y?) = (kik)kp) = k,k%p.
From Lemma 1, however, we have
(% + ) + y?) = (rx + sy + (ry — sx)?.

Thus
(&) (rx +syR + (ry —sx)2=kk?p.
Note that from (3),

x+sy=r2+s2= 0 (mod k)
and

ry —sx=rs —sr= 0 (mod k).
Thus k2 divides each term on the left-hand side of (5); dividing (5) by 42,

we get

<m) + (u) —kp,

k k

an equation in integers. Let x;, = (rx + sy)k and y, = (ry — sx)/k. Then
x2+ 2 =k,p, and the lemma will be proved when we show that
k, < k. The inequalities in (3) give

r2 + 52 < (kf2)? + (k/2)* = k?/2.
But
r*+ st =kk.

Thus k,k =k?/2 ork, =k/2. Hence k, <k, and to complete the proof of
the lemma, we need only to note that k, =-1. If k, = 0, then from the
last equation, r = s = 0. It follows from (3) that k|x and kly. Thus k| p,
sok = 1orp. Ifk = 1, then x2 + y2 = p and the lemma is proved, and if
k =p, then u? + 1 = p?, which is impossible.

Let us take an example. Starting with 122 + 12 = 5-29, we will carry
through the calculations of the lemma to get a representation of 29 as a
sum of two squares. Wehavex = 12,y =1, andk = 5. We haver = 12
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(mod 5) and s = 1 (mod 5); choosing r and s in the proper range, we get
r =2 and s = 1. Then
5229 = (22 + 12)(122 + 1) = (2- 12+ 1- 1 + 2-1 — 112
=252 + 102

Dividing by k? = 25 gives 29 = 52 + 22, the desired representation.
Exercise 4. Try the calculation for 232 + 12 = 10-53.

We will end with some remarks on diophantine equations closely
related to the sum of two squares. We have completely solved the
problem of representing integers as the sum of two squares: we know
which integers can be so represented, and Lemma 4, combined with
earlier lemmas, gives a method for actually calculating the representa-
tion. It is natural now to wonder about the representations of integers
as the sum of three squares. We would expect that more integers can be
represented when we have an extra square to add, and this is the case.
It is a fact that n can be written as a sum of three squares, unless
n = 4¢(8k + 7) for some integers e and k. So, the numbers smaller than
100 which cannot be written as the sum of three squares are

7, 15, 23, 28, 31, 39, 47, 55, 60, 63, 71, 79, 87, 92, 95;

a total of 15, as against 57 when only two squares were allowed. There
are even fewer exceptions if we look at sums of four squares; in fact,
there are none at all. Every integer can be written as a sum of four
squares, as we will show in the next section.

That would seem to settle the squares. That is, as far as the mere
representation is concerned. Of course, there are many, many other
questions that can be asked, and some that can be answered. For
example, how many representations does an integer have as a sum of
two squares? What is the sum of the number of solutions of x2 + y? = n?
forn=1,2,. .., N? And so on; as soon as one question is settled,
others crowd in to take its place. What about cubes? It is true that
every integer can be written as a sum of nine cubes. No one knows
what the corresponding number is for the sum of fourth powers (though
it is known that every integer greater than 10'°® is a sum of 19 fourth
powers), but the answer is known for fifth, sixth, seventh, and almost
all higher powers—for example, 37 fifth powers will do. Let g(k) be the
least value of s such that every integer can be written as a sum of no
more than s kth powers. The problem of finding gk) is called Waring’s
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Problem, after a mathematician who wrote in 1770 that every integer
was the sum of 4 squares, 9 cubes, 19 fourth powers, and so on. He was
just guessing; it was not until 1909 that David Hilbert proved that the
number g(k) existed for each k, and even then almost nothing was
known about its size for large k. Now g(k) can be determined for all
values of k, except for k = 4. For allk, 1 = k = 200000, except k = 4,
glk) = 2% + [(3/2)*] — 2, and it is strongly suspected that this formula is
true for allk = 1. (The notation [(3/2)¥] denotes the largest integer less
than (3/2)%, so for example [(3/2)%] = [27/8] = 3.)

Not every integer needs nine cubes to represent it: in fact, only 23
and 239 require so many. The largest integer that needs eight cubes is
454, and if you make a table of representations of integers as sums of
cubes, you will see, as did Jacobi when he made one by hand in 1851,
that the number of integers requiring seven cubes decreases as the size
of the integers increase. Numbers like 23, 239, and 454 are only annoy-
ing exceptions: of more interest than g(k) is G(&), the least value of s
such that every sufficiently large integer can be written as a sum of no
more than s kth powers. It is known that G(2) = 4, and it is curious that
the only other value of k for which G(k) is known is 4, the only small
value of k& for which gk) is known. G(4) = 16, and the most that is
known about other k are upper bounds: G(3) = 7 and G(5) = 23, for
example. The most that is known in general is thatk + 1 = G(k) = k(3
In k + 11), and the right-hand inequality is extremely difficult and
complicated to prove. Work on Waring’s Problem continues today.

As it does on another famous problem about representing integers as
sums of certain other integers: Goldbach’s Conjecture. In 1742, an
amateur mathematician named Goldbach noted that

4=2+2, 6=3+3. 8§=5+3, 10=5+35,
12=7+35, 14=7+17, Ce 100 =97 + 3,

and guessed that every even integer greater than two could be written
as the sum of two primes. He asked Euler if he could prove it. Euler
failed, and no one since has succeeded. The conjecture is almost cer-
tainly true—large even integers have thousands of representations—
and it is infuriating that it cannot be proved. The most powerful tools of
number theory have been applied, but they have given only partial
results, such as that every sufficiently large even integer is the sum of
no more than four primes, or is the sum of a prime and an integer that
has no more than two different prime factors, or that every even integer
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greater than two is a sum of no more than 20000000000 primes. The
course of human history will not be altered much if Goldbach’s Conjec-
ture is settled one way or the other, but it would be nice to find out.

Problems

¥ 1. Determine which of 1980, 1981, 1982, 1983, and 1984 can be written as a
sum of two squares, and for those that can, find a representation.
2. Determine which of 2000, 2001, 2002, 2003, and 2004 can be written as a
sum of two squares, and for those that can, find a representation.
* 3. Use Lemma 1 to find all eight of the representations of 32045 = 5-13-17-29
as sums of two squares.

4. Use Lemma 1 to get two representations of 4453 as a sum of two squares.

5. Prove that if n = 3 (mod 4), then n cannot be represented as a sum of two
squares.

6. What can n be congruent to (mod 9) if n is a sum of two squares?

* 7. Isittruethatif m and n are sums of two squares and m |n, thenn/m is a sum
of two squares? Prove or give a counterexample.

8. Is it true that if m and n are sums of two squares, then mn is a sum of two
squares? Prove or give a counterexample.

9. Fermat wrote:
2n + 1is the sum of two squares when and only when (i) nis even, and (ii)
2n + 1, when divided by the largest square entering into it as a factor must
not be divisible by a prime 4k — 1.
Show that this is equivalent to Theorem 1.

10. Girard wrote in 1632 that the numbers representable as the sum of two
squares comprise every square, every prime 4k + 1, a product of such
numbers, and the double of any of the preceding. Show that this is equiva-
lent to Theorem 1.
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Sums of Four Squares

In this section we will prove that every positive integer can be written
as a sum of four squares of integers, some of which may be zero. This
theorem is quite old. Diophantus seems to have assumed that every
positive integer is a sum of 2, 3, or 4 squares of positive integers, but he
never explicitly stated the theorem. The first to do so was Bachet
(1621). He verified that it was true for integers up to 325, but he was
unable to prove it. Fermat said that he was able to prove it using his
method of descent; as usual, he gave no details. In the light of sub-
sequent work on the theorem, we may doubt that Fermat’s proof was
complete. Descartes said that the theorem was no doubt true, but he
judged the proof ‘‘so difficult that I dared not undertake tofindit.”” (Itis
hard to resist the temptation to read ‘“so difficult that I was unable to
find it.”’)

Euler next took up the challenge, first working on the problem in
1730. In 1743 he noted that the product of two sums of four squares is
again a sum of four squares, a result fundamental to the proof of the
theorem, and indeed, he proved the theorem except for one point. In
1751, still pursuing that point, Euler proved another fundamental re-
sult, namely that 1 + x2 + y2= 0 (mod p) always has a solution for any
prime p. But the theorem was still out of his reach. Finally, in 1770,
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Lagrange, drawing heavily on Euler’s ideas, succeeded in constructing
a proof. In 1773, Euler (then 66 years old) gave a simpler proof—
success after 43 years.

We start by proving Euler’s two results.

Lemma 1. The product of two sums of four squares is a sum of four
squares.

Proof. The proof is utterly trivial. Finding the result was quite another
matter, as witness the thirteen-year gap between Euler’s first attack on
the problem and his discovery of the following identity:
@+ b*+c+d»)(r2+ s +t* +u®) = (ar + bs + ct + du)
+ (as —br + cu —dt)* + (at —bu — cr + ds)?
+ (au + bt —cs —dr)2.
It may be verified by multiplication. Note that the right-hand side,
when multiplied out, contains all the terms a?%?; a%?, . . . , d%?
that appear on the left-hand side multiplied out. Note also that it is
not impossible to see by inspection that all the cross-product terms
vanish.

To show that every positive integer is the sum of four squares, it
follows from Lemma 1 that we need only show that every prime is the
sum of four squares. For example, from

37=6%+ 12+ 0% + (7 and ST=T+2+2+ @,
we get '
2109 = 5737 =(6-7+ 1-2+0:24+0:02 + (62 —1-7+ 0-0 —0-2)?
+(62-10-0-74+0-2*+(6-0+1-2-0-2-0-7)
= 44* + 5% + 122 + 22,
we can similarly decompose any integer into a product of primes and

then get a representation of it as a sum of four squares, if we know
a representation of each prime as a sum of four squares.

Lemma 2. If p is an odd prime, then
1+x2+y*=0 (mod p)

has a solution with 0 = x <p/2 and 0 =y <p/2.

Proof. The numbers in
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__1 2
S1={W,F,%,...,<£j—>}

are distinct (mod p), as are the numbers in

. — 1\ ?]
&={—1—m;4—1%—1—ﬂ,...;4—(B—l>}~

S, and S, contain together (p — 1)2 + 1 + (p — D2 + 1 =p + 1
numbeis. Since there are only p least residues (mod p), we must have
one of the numbers in §; congruent to one of the numbers in §,:

"x%2= —1-y? (mod p)
forsomex andy,and0=x = (p—-1)2,0=y = (p— 1)2.

For example, take p = 17. The numbers in S, are 1, 4, 9, 16, 25, 36,
49, 64, and the numbers in S, are —1, -2, -5, —10, —17, —26, —37,
—50, —65. Their least residues (mod 17) are

0,1,4,9,16,8,2,15,13 and 16, 15,12, 7,0, 8, 14, 1, 3;

the sets have not one but five elements in common, namely 0, 1, 8, 15,
and 16. They give five solutions, three of which are distinct:

140+ 82 =1+P+7=1+5+52=1+T+P=1+4+0
0 (mod 17).

To show that every positive integer is the sum of four squares, we use
the same method of proof as was used to prove the theorem on integers
that are the sum of two squares. We express some multiple of p as a
sum of four squares and then construct a smaller multiple of p, also the
sum of four squares. Repeating the process often enough will give p as a
sum of four squares, and that is all we need. Since 2 = 12 + 12 + (# +
02, the case p = 2 is settled, and we can assume hereafter that p is an
odd prime.

I

Lemma 3. For every odd prime p, there is an integer m, m <p, such
that

mp =x% 4+ y* 4+ 22 + wt

has a solution.
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Proof. From Lemma 2 we know that there are x and y such that
mp =x?+v? + 1> + (2
for some m. Since 0 = x <p/2 and 0 = y <p/2, we have
mp =x%+y*+ 1<p¥4+p?4 +1<p?,

som <p.

Exercise 1. From
12:17=204 = 142+ 22 + 22 + (2

and
12-17 =204 =132 + 52 + 3* + 12,

find representations of 3-17 as sums of four squares.

Lemma 4. If m and p are odd, 1 <m < p, and
mp =x2+y? + 7 + w?,
then there is a positive integer k, with k, <m such that
kip =x.% +y:2 + 7.2 + w,?

for some integers x,, y, 2y, W;.

Proof. Asin the two-squares theorem, we will construct x,, y,, z;, W,
from x, y, z, w. First note that we can suppose that m is odd. If m is
even, thenx, y, z, w are all odd, all even, or two are odd and two are
even. In any event, we can rearrange the terms so that '

x =y (mod 2) and z=w (mod 2).

mp _ [(x—y\? x +y\? z—-w\? z+w\?
7= ) () )+ (57)

If m/2 is even, we can repeat the process and express (m/4)p as a sum of
four squares. Since m # 0, eventually we will have an odd multiple of p

written as a sum of four squares. For example, from
172-197 = 812 + 852 + 932 + 1072

Hence
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we get
86-197 = 22 + 83 + 7* + 100?
and
43-197 =49 + 512 + 382 + 452,
Now choose A, B, C, and D such that
A=, B=y, C=yg D = w (mod m).

and such that each lies strictly between —m/2 and m/2. We can do this
since m is odd. It follows that

A?+ B2+ C*+ D= x2+y?+2z* +w? (mod m),
o)
A+ B*+ C*+ D* =km
for some k. Since
A2+ B? + C? + D? <m?4 + m?/4 + m?/4 + m*/4 = m?,

we have 0 <k <m. (If k = 0, then m divides each of x, y, z, and w, so
mzlmp. This is impossible, because 1 <m <p.) Thus

m?*p = (mp)Ykm) = (x2 + y? + 22 + w?)(A? + B2 + C? + D?),
and from Lemma 1 we have .
m?kp = (xA + yB + zC + wD)* + (xB —yA +zD — wC)?
+ (xC —yD —zA + wBY* + (xD + yC —zB —wA P.
The terms in parentheses are divisible by m:
xA +yB +zC + wD =x*+y* + z2 + w? = 0 (mod m),
xB —yA +zD —wC =xy —yx + zw —wz = 0 (mod m),
xC—yD —zA +wB=xz —yw —zx + wy = 0 (mod m),
xD +yC —zB —wA =xw +yz —zy — wx = 0 (mod m).
So, if we put
x; =(xA+yB +zC + wD)im, Y1 = (xB —yA + zD —wC)m,
Zy = (xC —yD —zA + wB)m, w, =(xD +yC —zB —wA)Ym,
then we have
X2+ ¥t + 28+ w? = (m2kpVm? = kp.

Since k <m, the lemma is proved.
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Theorem 1. Every positive integer can be written as the sum of four
integer squares.

Proof. Suppose that n =p,®p,%: - - - p,®. Starting with Lemma 3, re-
peated application of Lemma 4 gives a solution of p; =x2 + y? +2* + w?
for eachi. From Lemma 1, we can write p; as a sum of four squares for
eachi. Applying Lemma 1 again (k times), we can get a representation of

Pi8p2% - - pir as a sum of four squares.
Problems
* 1. Express 31, 37, 41, 43, 47, and 53 as sums of four squares.
2. Express 11, 13, 17, 19, 23, and 29 as sums of four squares.
* 3. From 2-17-1984 = 67456 = 256* + 40* + 16* + 8, find a representation of
17-1984 as a sum of four squares.
4. From 53=72+22+0*>+0° and Lemma 1, find a representation of
18179 = 7°- 53 as a sum of four squares.
* 5. Use the idea in the proof of Lemma 2 to find solutions of 2 + x* + y2= 0
(mod 17).
6. Usetheidea in the proof of Lemma 4 applied to43- 197 = 49* + 512 + 382 +

45? to get a smaller multiple of 197 written as a sum of four squares.

7. If 8| +y* + 22 + w?), show that x, y, z, and w are even.

8. Ifn =x* + y* + z* + w*, show that by suitable ordering and choices of sign

10.

we can get x + y +z to be a multiple of three.

. Ifn=x*+y*+z>+w?andx, y, z w are nonnegative, show that

min(x, y, z, w) < n'®2 = max(x, y, z, w) < n',

Ifris even and x, y, and z have no common factor, show that r* = x* + y* +
z* is impossible.
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The theory of diophantine equations has not been perfected. There are
not many theorems that apply to a really wide class of equations.
Usually, special equations are attacked with special methods, and what
works forx® + 3xy + y® = Z3 may be worthless for solving x® + 4xy + y3
= z%. (On the other hand, the same method might work for both.) The
perfect theorem would be one that would let us look at any diophantine
equation and decide whether it had solutions. It would be even better if
the theorem would let us decide exactly how many solutions there are,
and better yet if it would tell us exactly what they are.

This perfection will never be achieved. There was once hope that it
could be approached, though. In 1964, the great German mathemati-
cian David Hilbert presented a list of 24 problems which he thought
were worthy of the attention of twentieth-century mathematicians.
They were in fact worthy, and the search for their solutions has turned
up important results; see, for example, Fang [5]. Hilbert’s tenth prob-
lem was to find, if possible, a method which would allow us tolook ata
diophantine equation and tell if it had solutions or not..It took more
than sixty years to discover that-there is no such general method that
will work for all diophantine equations, and that it is as uséless to look
for one as it is to try to trisect angles with straightedge and compass

155
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alone. (Davis [4] has explained, as nontechnically as possible,
Matusevic's resolution of the problem.)

To illustrate the state the theory of diophantine equations has
reached today, here is one of the most general theorems now known
(general in the sense that it applies toa larger class of equations than do
other theorems):

Theorem. Let
Fle, y) =a,x" + @1 X"y + @, ox" 29 + - -+ agy®,
and suppose that F(x, 1) = 0 has no repeated roots. Then the equation
F@, y)=c,

where ¢ is an integer, has only finitely many solutions if n =-3.

In particular, this theorem says that ax" + by" = ¢ has, in general, only
finitely many solutions if n = 3. What if n < 3?7 We have completely
analyzed the case n = 1 in the section on linear diophantine equations,
and, for n = 2, we considered a special case in the section on Pythago-
rean triangles. The general equation when n = 2 is too complicated for
us to treat here. In this section, we will treat another special case:

x2—Ny?=1,

where N is a positive integer. We will show that if we can find one
solution of this equation withx > 1, then we can find infinitely many. In
fact, if we can find the smallest solution (the one withx > 1 as small as
possible), then we can find all the solutions of the equation.

The equation x2 — Ny* = 1 is commonly called Pell's Equation. This
is the result of a mistake made by Euler, who called it that. Euler was
so eminent that everyone has called it that since. But Pell never solved
the equation, and there is even doubt that he could have. The mathe-
matical historian E. T. Bell [3] has written, ‘‘Pell mathematically was a
nonentity and humanly an egregious fraud. . . . He never even saw the
equation.”’ Certainly, frauds and nonentities do not deserve the im-
mortality of having an equation called after them. Fermat not only saw
the equation, he was able to solve some portions of it. Hence we will
callx? — Ny* = 1 Fermat’s Equation.

The equation is always satisfied when x = =1 and y = 0, whatever
the value of N. We will call solutions in which either x =0 ory =0
trivial solutions.
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* Exercise 1. Find, by trial, a nontrivial solution of x2 — 2y? = 1, and one

of x2 —3y? =1.

An efficient way to go about finding a nontrivial solution of
x2— Ny2?=1 by trial is to make a table of 1 + Ny2fory=1,2,. ..
and inspect it for squares.

In solving x2 — Ny? = 1, there is no need to consider negative values
of N. If N = -2, then it is clear that the equation has only the trivial
solutions with y = 0, because both terms on the left are nonnegative.
Forn = —1, there are also the solutionsx = 0,y = *=1. These are trivial
too. Besides supposing N to be positive, we can assume that N is not a
square. If it is, then N = m? for some m, and we have

1 =x%-m%*=(x —my)x + my).

The product of two integers is 1 only when both are 1 or both are —1,
and all the solutions can thus be quickly found by solving pairs of linear
equations.

* Exercise 2 (optional). Show that x = =1, y = 0 are the only solutions.

We will hereafter assume that N >0 and NN is not a square. With
these assumptions, it is always possible to show that x> — Ny2 =1 al-
ways has a solution other thanx = =1,y = 0. We will accept this result
on faith and not prove it. There are two methods for proving the exis-
tence of a nontrivial solution: one depends on developing the extensive
machinery of continued fractions, and the other (first constructed in
1842 by Dirichlet, who improved a proof given by Lagrange in 1766) is
not short.

Because

x2 =Ny =@x +y VN)Xx —y VN),

irrational numbers of the form x +y VN are closely connected with
solutions of Fermat’s Equation. They also have several important
properties, which we develop in the following lemmas. We will say that
the irrational number

a=r+s\/.7V_

(- and s are integers) gives a solution of x2 — Ny* =1 if and only if
r? — Ns2 = 1. For example, 3 + 2 V2 gives a solution of x2 — 2y2 =1
and 8 + 3 V/7 gives a solution of x2 — 7y% = 1.
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Lemma 1. If N > 0 is not a square, then
x+yVN=r+sVN

if and only ifx =r andy =s.

Proof. If x =r and y = s, then clearly x + y VN =r + s VN. It is the
converse that is important. To prove it, suppose thatx +y VN =r +
s VN and y#s. Then

X —F

VN =

s=Yy
is a rational number. But since N is not a square, \/]TI is irrational.
It follows thaty = s, and this implies x = r.

Lemma 2. For any integers a, b, ¢, d, N,
(@* — Nb*)c? — Nd?) = (ac + Nbd)* — N(ad +bc)*.

Proof. Multiply it out. For example, (22— 3-12)(7*> —3-4%) = (14 +
3-1-4)2 - 324+ 1-7)> =26> — 3-152, and this is in fact correct:
(4 — 3)(49 — 48) = 676 — 675.

Lemma 3. If a gives a solution of x2 — Ny? = 1, then so does l/a.

Proof. Let a=r+s V/N. Then we know that > — Ns? = 1, and we
have

1 _ 1 r—s\/ﬁzr—s\/ﬁ_r_s\/ﬁ_
a r+sVN r—-sVN  r:—Ns® ’

since r? + N(—s)? = 1, the lemma is proved.

Lemma 4. If o and B give solutions of x> — Ny? = 1, then so does af3.

Proof. Leta =a +b VN and 8 =c +d VN. Then
af =(a+b VN)c +dVN) = (ac + Nbd) + (ad + bc) VN

and from Lemma 2 we have
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(ac + Nbd)* — N(ad + bc)? = (a® — Nb?*)(c? — Nd?) = 1,

and this shows that o83 gives a solution.

* Exercise 3. Two solutions of x? — 8y2 =1 are (x, y) = (3, 1) and (17, 6).

Apply Lemma 4 to find another.

Lemma 5. If « gives a solution of x> — Ny? = 1, then so does o* for any
integer k, positive, negative, or zero.

* Exercise 4 (optional). Prove Lemma 5. First show that it is true for all

k =-1by applying Lemma 4 and induction. Then show that it is true for
k = —1 by applying Lemma 3. Then consider the case k = 0.

Lemma 5 shows that if we know one number «, o > 1, which gives a
solution of x2 — Ny? = 1, then we can find infinitely many, namely those
given by of, k=2, 3, . . . . The solutions are all different, because
a**1>a* for all k. For example, 3+ 2V2 gives a solution of
x? —2y% = 1. So, then, do

BG+2V2r=17+12V2
and
B+2V2P=(17+ 2V2)3+2V2) =99+ 70V2
and higher powers of 3 + 2 V2.

* Exercise 5. Check that (3 +2V?2) and (3 + 2V/2)? give solutions of

xt-2y*=1.

* Exercise 6. « = 2 + V3 gives a solution of x2 — 3y? = 1. Find two other

nontrivial solutions.

Lemma 6. Suppose that a, b, ¢, d are nonnegative and that
a=a+bVN and 8 =c +d VN give solutions of x — Ny = 1. Then
a<Bif and only if a <c.

Proof. Suppose that a <c. Then a® < ¢? and because a? = 1 + Nb? and
c¢? =1+ Nd? we have Nb? < Nd?. Because none of b, d, N are negative,
it follows that b < d. Together witha < c, this gives « < 3. Toprove the
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converse, suppose thata < 8. If a =-¢, thena? = ¢2. From this follows
b? =-d?, which implies o =-3. Since this is impossible, we have a < c.

Now we are in a position to describe al the solutions of x2 — Ny? = 1.
Consider the set of all real numbers that give a solution of x2 — Ny? = 1.
Let 6 be the smallest number in the set greater than one. Note that
Lemma 6 guarantees that there will be such a smallest element, be-
cause the members r + s VN of the set can be ordered according to the
size of r, which is an integer, and any nonempty set of positive inte-
gers contains a smallest element. We will call § the generater for
x? — Ny? =1, and we can now prove

Theorem 1. If 0 is the generator for x2 — Ny%? = 1, then all nontrivial
solutions of the equation withx and y positive are given by 6%,k = 1, 2,

Note that the restriction of x and y to positive values loses us nothing
essential, because nontrivial solutions come in quadruples

{(xr y)v (X, —y)v (_X, y)’ (_X, —}’)},

and exactly one solution has two positive elements. Note also that we
say nothing about the existence of a generator. It is a fact, as was noted
earlier, that such a number can always be found. There is a method for
getting 6 from the continued fraction expansion of VN by an easy
calculation—easy in the sense that a computer would make light work
of it. For some values of N, the computation is quite tedious. Of
course, a generator can be found by trial, and for a long time, this was
the only method available. In the seventh century, the Indian mathe-
matician Brahmagupta said that a person who can within a year solve
x2 —92y? =1 is a true mathematician. Perhaps, and perhaps not; but
such a person would at least be a true arithmetician, because the
generatoris 1151 + 120 V/92. Solution by trial can also be difficult for so
innocent-seeming an equation as x2 — 29y? = 1; its smallest positive
nontrivial solution isx = 9801 and y = 1820. The equation x? — 61y* = 1
has no positive nontrivial solution untilx = 1766319049, y = 226153980.
You can verify that this is a solution by multiplication, if you wish.

Proof of Theorem 1. Let x =r, y =s be any nontrivial solution of
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x2 — Ny? = 1 withr >0ands > 0. Let a =» + s VN. We want to show

that « = #* for some k. We know that « = 6 by the definition of
generator, so there is a positive integer k such that

0 = o < 6%,

Thus 1 < 6%« < 6. From Lemmas 4 and 5, we know that 6%« gives a
solution of x2 — Ny? = 1. We have defined 0 to be the smallest number
that is greater than one and which gives a nontrivial solution. But § %«
is smaller than 6 and also gives a solution. Hence 8%« gives a trivial
solution. Thus 6~ %a = 1 or @ = 6%, as we wanted to show.

Problems

%
-

W N =

. Find the generator for x> — Ny* =1 when N is 8, 6, 12, or 10.

. Find the generator forx> — Ny*> =1 when N is 15, 7, 11, or 13.

. Find two positive nontrivial solutions of x> — Ny? = 1 when N is 8, 6, or 63.
. Find two positive nontrivial solutions of x2 — Ny* =1 when N is 15, 7, or

99.

5. Find three nontrivial solutions of x? + 2xy —2y* = 1.

6. Determine infinitely many solutions of the equation in Problem 5.

7. (a) Show that if a* > b, then x? + 2axy + by* = 1 has infinitely many so-

10.

11.

12.

lutions if a*> — b is not a square.

(b) If a*> < b, show that the equation has only solutions in which ¥ = 0, 1, or
—1.

(c) What happens if a* =b?

. (a) Leta =2mn, b =m* — n*, and ¢ = m?* + n?* be the sides of a Pythago-

rean triangle. Suppose that b =a + 1. Show that (im — n)* —2n* =1,
and determine all such triangles.
(b) Find the smallest two such triangles.

. (a) Show that a triangle with sides 2a — 1, 2a, 2a + 1has an integer area if

and only if 3(a®> — 1) is a square.

(b) Find three such triangles.

(a) Show that a triangle with sides 2a, 2a + 1, 2a + 2 has a rational area if
and only if 3((2a + 1)* —4) is a square.

(b) Show that this is impossible.

Show that if x; + y, VN is the generator for x2 — Ny* = 1, then all solutions
X, Yx can be written in the form

2x, = (x; + VN + (x, —y; VN)*,
2 VNyk = (,X] +y1 W)k - (Xl - Y1 \/h_l)k.

Show that if x, + y, VN is the generator of x? — Ny? = 1, then
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0<x, -y VN<L.

* 13. With the notation used in Problems 11 and 12, what happens to x,/y, as &
gets larger and larger?

14. Ifx, + y, VN is the generator for x* — Ny* = 1 and
X+ ¥eVN = (x, + y, VN)k,
k=1,2, ... ,show that

Xiept = 2X4 X, — Xg—ys
Vi1 = 2X1 Yk~ Yie-1-

®15. 10® + 112 + 122 = 132 + 142, Find another sum of three consecutive squares
equal to a sum of two consecutive squares.



Section

Bounds for m(x)

Prime numbers have always fascinated mathematicians, professional
and amateur alike. They appear among the integers, seemingly at ran-
dom, and yet not quite: there seems to be some order or pattern, just a
little below the surface, just a little out of reach. Euler tried to discover
“‘the secret of the primes’’ but it always eluded him. People have
searched for primes, for twin primes, for formulas which would give all
the primes or give only primes, and people are still searching today.
The largest pair of twin primes—that is, primes whose difference is
2—that is known was discovered in 1972: 76-3%° — 1 and 76-3'% + 1
are both primes. It is not even known if the number of twin primes is
infinite; it is not known whether n? + 1 is prime infinitely often: the
primes do not give up their secrets easily.
In the next section we will look at some formulas for primes, and in
this one we will consider the number of primes among the integers 1, 2,
., n. Although we may have a hard time telling whether a specific
large integer is a prime, we can make quite accurate statements about
how many integers in a given interval are prime. An actuary for a life
insurance company does a similar thing when she makes accurate
statements about how many policyholders will die in the coming year,
even though she can say nothing about who is doomed. A casino oper-
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ater also does a similar thing when he makes accurate statements about
how much profit a roulette table will make, even though he can say
nothing about how much you will lose. We can often tell what is hap-
pening on the whole, even when the details are not clear.

In this section, x will not be restricted to be an integer, nor will y,
though other lower case italic letters will continue to denote integers.
Let 7(x) denote the number of primes less than or equal to x.

* Exercise 1. What are 7(2), m(24), w(V401), and 7 (3)?

Givena table of primes, counting will give 7 (x) for small values ofx:

x 1 10 100 1000 10000 10° 108 107
w(x) | 0 4 25 168 1229 9592 78498 664579

It looks as if 77(x) is increasing, but at a slower rate thanx, and it would
not be unreasonable to suppose that anyone considering the evidence
might sooner or later guess that 7 (x) and x/In x are increasing at the
same rate. This is indeed so, and the

Prime Number Theorem. Asx increases without bound, the ratio of 7 (x)
to x/In x approaches 1.

was guessed more than 100 years before it was proved. (In x denotes
the natural logarithm of x.) In fact, for x between 100 and 107, the ratio
stays between 9 and 1.2, and by the time x is 10%° it is 1.048. We will
not prove this; instead, we will establish the weaker result that

(1) Tin2< T8 32

for x = 2. That is, we are showing that the ratio stays between .173
and 22.18. The inequalities in (1) were first proved by Tchebyshev in
1850 with better constants than .173 and 22.18 (they were closer to 1),
and he also proved that if the ratio of #(x) to x/In x approached any
limit, it had to be 1. That was the first step on the way toward the
proof of the Prime Number Theorem, though Legendre had stated in

1780 that good approximation to 7(x) was x/(In x — 1.08366), and in
1792 Gauss suggested L Idy/ln y, which fits even better. But Gauss was
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not able to suggest a proof, and it was not until 1859 that Riemann
attempted a proof which was not adequate, but contained the ideas
essential for a complete proof. It was in 1896 that Hadamard and
de la Vallée Poussin independently proved the theorem, and work on
refinements of it still continues.

The proof of (1) may seem unnatural because some of the pre-
liminary results are proved by induction, and a proof by induction
never discloses where the result came from in the first place, and
because it may not be clear where the central idea came from, or
even what it is. Since it did not occur to Gauss, we do not have to
feel bad if we do not see it immediately.

Recall that forn =1,n'=n(n —~1)---3-2-1, and that

(n) =0 -n=-r+1 n!
r) rir—=1---1 Tl =r)!

forn = r = 1. For example, (;) =5 =35

4
Our proof depends on properties of ( 2":) . Its first few values are

n 12 3 4 5 6 7

<2:> 2 6 20 70 252 1748 17160

They may not seem very interesting, but when they are factored they
have some striking properties. Table 1 gives the factorization for
n=1,2 ... ,20, and several observations can be made:

1. All the primes between n and 2n appear with exponent 1.

2. None of the primes between 2n/3 and n appear at all.
3. ( 2:) is always divisible by n + 1.
4. Each prime-power is less tha 2n.

The last one is not easy to see, but it is the one we will need. Before
we prove that it is true, we need to look at the prime-power decom-
_ @yt
T (n)?

.. 2 . .
position of n! because ( nn) , SO the power that a prime is
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raised to inthe prime-power decomposition of ( 2:) will be the power

it is raised to in the prime-power decomposition of 2xn! minus twice
the power it is raised to in the prime-power decomposition of n! The
prime-power decomposition of 20! is 21-38-54-72-11-13-17-19, and
it is not hard to see why the exponent of 2 is 18. One power of 2 comes
from each of the 10 multiples of 2 (2, 4, 6, 8, 10, 12, 14, 16, 18, 20),
one more from each of the 5 multiples of 4 (4, 8, 12, 16, 20), one more
from each of the 2 multiples of 8 (8, 16), and one from the single
multiple of 16 (16).

Table 1. Exponent of p in the prime-power decomposition of ( 2:)

D
11 13 17 19 23 29 31 37

[\>]
w
W
|

N
B R A AR PO~ OO0® AU W —
—_ N et = O WRN=NN=—=WWN —=N——
N = W NNWO O OON = =NOO —
RN === NN OOO = —=mO O ——
'—‘»—‘.»—‘OOOO'—"-—-'—OOOO—H—H—‘
—_— e O O OO OO == =
—_ OO OO OO O m r o
OO O O = =
O O = i et b e —
— et e
Pttt kot
Pk p— ) p—

* Exercise 3. What is the exponent of 2 in the prime-power decomposi-
tion of 12!? What is the exponent of 3?

The number of multiples of 2 that are less than or equal to 20 is r,
where 2-1, 2-2, . . ., 2-F are legs than 20. That is, r is the largest
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integer less than 20/2, or [20/2]. Similarly, the number of multiples of 4
that are less than or equal to 20 is [20/4], and so on:

18 = [20/2] + [20/4] + (20/8] + [20/16].

In general, we have

Lemma 1. The highest power of p that divides n! is
[nip] + (np?] + (nlp3) + - - - .

Proof. Each multiple of p less than or equal to n adds one power of p to
n!, and there are [n/p] such multiples. The multiples of p? each contri-
bute an additional power of p, and there are [n/p?] such multiples. And
so on: the additional contribution made by the multiples of p* is [n/p*],
and hence p to the power [n/p] + [n/p?] + [n/p3] + - - - exactly dividesn!

As an application of the lemma, we can determine how many zeros
there are at the end of 1984! The highest power of 5 that divides 1984! is

(1984/5] + [1984/25] + [1984/125] + [1984/625] = 396 + 79 + 15 + 3
= 493.

Since there more than that number of factors of 2 in 1984!, it ends with
a string of 493 consecutive zeros.

* Exercise 4. How many factors of 2 are there in 1984!?

Lemma 2. The highest power of p that divides ( 2:) is

(2n/p) — 2[n/p] + [2n/p?] — 2[n/p?] + (2n/p®] — 2[nip®)+ ---.

Proof. Since (Znn> = (2n)!/(n!)?* we can apply Lemma 1. The numera-

tor contains exactly (2n/p] + [2n/p?] + (2n/p®] + - - - factors of p and
the denominator contains exactly 2([#/p] + [n/p?] + [n/p®] + - - -) fac-

tors of p, so < 2nn> contains exactly their difference.

Note that all these sums of greatest-integer brackets end, since
sooner or later p* > n, and so (n/p%] = [nfp**1] = --- =0.



168 Section 21
Lemma 3. Foranyx, [2x] - 2[x]=1.
Proof. From the definition of the greatest-integer function, [2x] = 2x
and [x]>x — 1, so
[2x] — 2[x] <2x —2(x — 1) = 2.

Since [2x] — 2[x] is an integer, the conclusion follows.

The next lemma is the one which makes the proof work.
Lemma 4. Each prime-power in the prime-power decomposition of

< 2n”> is less than or equal to 2n.

Proof. Suppose that p” is in the prime-power decomposition of (2:> .

Suppose that p">2n. Then [2nlp"] =[2nlp™*)=--- =0, [np']=
[n/p™*] = --- =0, so the sum in Lemma 2 ends after » — 1 terms:
) r = ([2n/p] — 2[nip)) + (2n/p*] = 2[n/p*) + ---

+ ((2n/pm) = 2[nlp™)).

But from Lemma 3, each of the terms in parentheses is at most 1. Thus
(2) saysthat r=1+1+4+ ---+1(r—1 terms) or r<r — 1, which is
impossible. Thus p” = 2n.

We next need bounds on < 2nn> .

Lemma$. Forn=1,2"=< (2nn) = 2%,

Proof. We will use mathematical induction. The lemma is true for

n = 1 because (f) = 2. Suppose that it is true for n = k. Then

<2(k + 1)) 2k +2)! 2k + 2)2k + D)2k

k+1 ) ((k+ DY (k+ Dk'(k+ Dk!
22k + 1) (Zk) ,
T ok+1 k
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On the one hand,

22k + 1) (2K, _ 22K +2) 21<> B (2k .
K+l <k>< K+ (k =4 k>542

= JAk+1)
and on the other,

2(2k++11) <2kk) . Z(kk_:ll) <2kk> ) <2kk

= Jk+1

Lemma 6. Forn=2, m2n) —w(n)< 2nln2)Inn.

Proof. The idea is that the prime-power decomposition of (2:)

contains each prime between n and 2n. This is because

(2;1) _ 2n2n-1)--(n+ l)’
n] — nn—1---1

and none of the primes in the numerator can be canceled by any factor
in the denominator. Thus

<2nn> =11 »

But each prime is larger than n, so

p= 11 »
n<p=2n n<p=2n

which is n multiplied together as many times as there are primes be-
tween n and 2n. That number is 7(2n) — m(n), and so

n= nvr(zn)—ﬁ(n)

n<p=2n

So, using Lemma 5, we get _
22w > ( 2}1) > nw(Zn)—ﬂ(n).
i

Taking logarithms of both sides gives 2n In 2 =(w(2n) — w(n))In n,
which is what we wanted to show.

Lemma 7. Forn =2, w(2n)=n In 2/In(2n).
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Proof. From Lemma 4, each prime-power in the prime-power decom-

position of (Znn) is at most 2n, and there are at most 7(2x) prime-

powers. Hence ( zn") =< (2n)™®"_ From Lemma 5, we get 2* =< (2n)"®",

son In2=7Q2n)In 2n), and that is what was to be shown.
Lemma 8. Forr= 1, 7(227) < 2%+2y.
Exercise 5. Verify that the lemma is true for» = 1 and 2.

Proof. We will use mathematical induction. The lemma is true for
r = 1. Suppose that it is true for r =k. Then

72K = (m(272) — w(2K)) + m(2H).
From Lemma 6 we have

w(22*2) = (2-2%-1n 2)/In(2%*) + 7(2**)

= 2Nk + 7 (22),
and from the induction assumption we get
w(22+2) < Rkfl + 282l = 5.2k,
We want to show that
m(22*2) < 22Kk + 1) = 16-22%/(k + 1),

and this wiil be so if S/k < 16/(k + 1). But this is true for k = 1.

Now we can prove

Theorem 1. For x = 2,

A‘;ln 2 (x/ln x) = m(x)= 32 In 2 (c/In x).

Proof. To get the left-hand inequality, let n be sothat2n =x <2n + 2.
We will apply Lemma 7:

nin2_nln2_2n+2In2
InRrn)  Inx = 4 Inx

xIln2
4Inx

w(x)=72n)=:
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To get the right-hand inequality, choose r so that 2272 < x < 22" and
apply Lemma &

mx) _ w27 _ 20t 16

x - 22r—2 221‘—2’. - r
But Inx < (2r) In 2, so r > (In x)(2 In 2), and it follows that

7(x) < 32In2
X Inx =

which is what we wanted.

Problems

on

T 1. (a) What is the highest power of 2 that divides 1984! ?
(b) For which n does 2" divide n! ?

2. Prove by induction a stronger version of part of Lemma 5, namely
(2") >22"\n forn= 1.
n
T 3. Prove that if n <p = 2n, then p appears in the prime-power decomposi-
. 2n
tion of i to the power 1.

4. Prove that if p is odd and 2n/3 < p s »n, then p does not appear in the

. .. 2n
prime-power decomposition of ( n)

~
w

1
. Let p, denote the nth prime. If 7r(x) = ax/In x, show that p, = - nnna
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Formulas for Primes

Inthe earlier days of mathematics, there was a feeling that *‘function’’
and ““formula’” were more or less synonymous. Today, the notion of
function is more general, but many of us still feel more comfortable
with a function if we have an explicit formula to look at. There is no
difference, really, between

f{n) is the largest prime factor of n

and G. H. Hardy’s formula

S
f(n) = lim lim lim ' (1 - (cos* (u!)m/n)}*].
r—w g—o t—o u=0
The first expression is simpler, but perhaps the second lets us feel that
we somehow have more control over f. (Some primitive people believe
that if you know a man’s name, then you have power over him. It is the
same principle.) '

The importance of formulas is of course not psychological but prac-
tical: in general, a formula will let us compute things of interest. Thus
the formula above is less useful than the verbal description: it obscures
what f'is, and it does not lend itselfto computation. But if we agree that
formulas in general are nice things and worth having, then it is reason-
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able to search for them. We might ask for a formula for p,, the nth
prime. But the primes are so irregularly scattered through the integers
that this is probably beyond all reason. The next best thing would be to
have a formula that would produce nothing but primes. The aims of this
section are to show that no polynomial formula will work, to exhibit a
formula which will (but which is not adapted to computation), to prove
that there is a prime between » and 2 for all positive integers », and to
use this to get another formula for primes.
The simplest sort of formula to consider is

f(n) =an +b.

If we found such a function that gave nothing but primes, then we
would have an arithmetic progression, with difference a, consisting
entirely of primes. Looking through tables of primes, we can find vari-
ous arithmetic progressions of primes, but none of infinite length: for
example,

3,5, 7;
7,37, 67,97, 127, 157;
199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089.

But no infinite arithmetic progression can be made up entirely of
primes, as we now show. Suppose that an, so (a, p) =1 and hence
there is an integer r such that ar = —b (mod m). Then

alr +kp)+b = ar +b= 0 (mod p)

fork =0,1,. . . ,so every pth term of the sequence is divisible by p.
The longest arithmetic progression known that consists entirely of
primes is 223092870 + 2236133941 forn =0,1,. . . ,15([7],and itis

.not known if there exist arbitrarily long arithmetic progressions of

primes.

After seeing that a sequence {an + b} cannot consist entirely of
primes, it is natural to ask whether the sequence can contain infinitely
many primes. The answer to this is given by Dirichlet’s Theorem: If
(a, b) = 1, then the sequence {an + b} contains infinitely many primes.
For example, among the members of the sequence {4n + 1} are the
primes 5, 13, 17,29, 37,41,. . . ,andamong {12n + 7} are 7, 19, 31,
43, 67, . . . ; Dirichlet’s Theorem says that we will never come to a
last prime in either sequence. The condition (a, b) = 1 is clearly neces-
sary: {6n + 3} contains only one prime and {6n + 4} contains none.
Dirichlet’s great achievement was in showing that the condition was
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also sufficient. The proof of this theorem is not at all easy, and we will
not attempt it.
However, some special cases are easy. Consider {3n + 2}, suppose
that there are only finitely many primes in it, and call them p,, p,,
. pr-LetN=p,p, - pp. IfN=1 (mod 3),then N + 1= 2 (mod
3) and thus must have at least one prime divisor congruent to 2 (mod 3)
(otherwise N would be congruent to 1 (mod 3)). But N + 1= 1 (mod
Di), so whatever prime divisor it has is not one of p;, p2, . . . , pp. If
N =2 (mod 3), then N + 3 = 2 (mod 3), and N + 3 must have a prime
divisor congruent to 2 (mod 3). But N + 3= 3 (mod p,), so its prime

divisor is not one of p;, p,, . . . , pi either. This is impossible so the
assumption that there were only finitely many primes in the sequence
was wrong.

No polynomial can have only prime values, either. If f(n) = a,n* +
a;n*7' + -+ - + ay, and if r is such that f(r)= 0 (mod p) for some p, then
fr + mp)=f(r)= 0 (mod p) form =1,2,. . . . Just as with arithmetic
progressions, if one term is divisible by p, then every pth term from
there on is also divisible by p. The champion quadratic polynomial for
having consecutive prime values is n? + n + 41, found by Euler. It has a
prime value forn = —40, —39,. . . ,39. However, 402 + 40 + 41 = 412,
and every forty-first term in the sequence {n>+n + 41} is divisible
by 41. The analogue of Dirichlet’s Theorem for higher-degree poly-
nomials would be that {a,n* + a,n "' + --- + a;} contains infinitely
many primes if ay, a,, . . . , a, have no common factor. No such
theorem has been proved, and it is not even known if n> + n + 41 is
prime infinitely often, though it seems unlikely that this should not
be so.

On the other hand, we can construct a polynomial that assumes as
many consecutive prime values as we want, because it can be shown
that it is always possible to make a polynomial of degree d take ond + 1
arbitrarily assigned values. For example, if

60f(x) = 7x® — 85x* + 355x® — 575x* + 418x + 180,

then we have

n 0 1
f(n) 35

A similar polynomial could be constructed to take on 81 consecutive
prime values, but it would be of degree 80.

After giving up on polynomials, it would be natural to try expo-
nential functions. For example, if

3 4 5

2
7 11 13 17
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fln) = [3/2)1,

then f(n) is prime for n =2, 3, 4, 5, 6, 7 (the values of the function
are 2, 3, 5, 7, 11, and 17), but f(8) = 25, and the next prime in the
sequence does not come until f(21) = 4987. No one has proved that a
formula like f(n) = [6"] cannot always give a prime. Nor is it known
whether [0"] can be prime infinitely often. Such questions seem
hopelessly difficult.

Nevertheless, there do exist functions, expressible as a simple
formula, that always represent primes. We will prove, partly, a striking
result of Mills [11]:

Theorem 1. There is a real number 9 such that [6*] is a prime for all
nn=1,2, ....

As we shall see, this theorem contains less than meets the eye, and
it should not seem nearly so striking after we finish the proof. The
proof gives a construction for 6, but the construction depends on being
able to recognize arbitrarily large primes. If we could recognize
arbitrarily large primes, we would have no need of the formula.

In the proof we will use two theorems from analysis.

Theorem. If a sequence u,, u,, us, . . . , Uy, . . . is bounded above
and nondecreasing, then it has a limit, 8, as» increases without bound.

That is, if there is a number M such that u, <M for all n and
Uy < Upy, for alln, n=1, 2, . . ., then there is a number 6 such
that the difference between ¢ and u, becomes arbitrarily small as n
increases without bound. We will not prove this theorem, or the next.

Theorem. If a sequence vy, vy, V3, - . - , U, . . . IS bounded below
and nonincreasing, then it has a limit, ¢, as» increases without bound.

We will write
im u, =0 and Im v, =¢
n-—>00 n—>0

EX ]

and read ‘‘the limit of u, as n approaches infinity equals 0,”” and a

corresponding statement for v,.
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Proof of Theorem 1. The proof depends on the following theorem:
there is an integer A such that if » > A, then there is a prime p such
that

(1) n<p<(n+1p®~1.

We will not prove this but we will use it to determine a sequence
of primes that will in turn determine 6. Let p, be any prime greater

than A, and forn =1, 2, . . . , let p,+, be a prime such that

(2 Pr’® <Pus1 <(pp+ 1P = L.

Such a prime exists for each n on account of (1). Let

(3) up, =py"  and vy =(p,+ 1y,
n=1,2,.... We see that as n increases, u, increases, because
from (2),

) Uny =Pnsi’ > PRV =pa " =t

Furthermore, {v,} is a decreasing sequence, because from (2),
() Var1 = @i + D7 <@ + 1P = 1+ D7 = (0 + 1) = o,
It is clear from (3) that u#, <v,. Hence, because of (5),

Uy <V, <V < -0 <y,
so u, <v, for all n. In the same way, from (4) we have

D Sl > lp_ > ° Uy,

so v, >u, for all n. Thus {u,} is an increasing sequence of numbers
that is bounded above by v,. It follows that {u,} has a limit. Call it 6.
Also, {v,}is a decreasing sequence of numbers that is bounded below
by u,. Hence {v,} has a limit too. Call it ¢. Since u, < v, for all n, it
follows that 6 = ¢. In fact, since {u,} increases and {v,} decreases,
we have

Up<=o¢<v,
for all n; thus
U< f¥= ¥ <p,”
for all n. But from the definitions of «, and v,,
u} =p, and v =pa+ 1.
Thus
D<@ <p,+ 1.

This locates 8> between two consecutive integers, and so
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(6] =DPas

a prime, for all n.

From the construction, we see that knowledge of 6 and knowledge
of all the primes is essentially equivalent, so that the theorem gives us
nothing that we did not have before, except perhaps pleasure at seeing
a clever idea neatly worked out. The theorem would be important
only if we could discover what 0 is by some method independent of
all the primes, and this is not likely.

To prepare for getting another formula for primes, we will derive a
result of independent interest, Bertrand’s Theorem:

Theorem 2. For alln = 2 there is a prime p such that n <p < 2.

Proof. Just as in the last section, we will need properties of (2: ), and
we will need to recall the binomial formula
(6) (X +y)n =x"+ (’;) xn——ly
n n—2,2 .. n n—1i n
+<2>x~y+ +<n__1)xy +y",

trme for any x and y. We will assume that for some n there are no
primés p such that » <p <2n, or what is the same thing for
n<p = 2n, since 2n is not a prime when n = 2. We will show that
this implies that n < 2788, so that the theorem is true for n =-2788.

By checking the cases n =1, 2, . . . , 2787, we can then complete
the proof.

First we will show that for n =-2,
@) H p = 2,

p=n

This is not a strong inequality—for n = 10 it asserts only that
210 = 1048576—but it is all that we need. The binomial expansion of
(1 + 1)2m+1 iS

(1+1)2m+1:1+ (2m+1>+...+ (2m+1>+ (2m+1>
1 m m+1

+H_+(2m+1)+1
2m
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2_(2m+1>+ (2m+1)‘
m m+1

The two terms are both equal to

2m+ HQ2m)- - - (m+2)
®) m(m— 1) - - - 1 ’
so 2#m+l =.2 <2mm+ 1) or
) 2tm = (me+ 1)-

Also (Zmn-: 1> is divisible by each prime p such that m + 1 <p =
2m + 1, as inspection of (8) shows. Thus

(10) [T o= (" ")=2n

m
m+1l<p=2m+1

Now we can prove (7) by mathematical induction. It is true for
n = 2. Suppose that it is true for all n < k. If k is odd, then k + 1
is even, and

(11) H p= H p = 2% < kD),
p=k+1 p=k
If k is even, say kK = 2m, then

(12) [Me=(17) (,,mﬂm” )

p=k+1 p=Em+l
2m+1Y2m +2 — 92K+
= 22Am+Do2m _ Yam+2 — 2 (Rt ,

where the induction assumption was used on the first product and (10)
on the second. (11) and (12) complete the induction.

Remember that we have assumed that (2:) = N has no prime divi-

sors p such thatn <p = 2n. But

Cn2n-1)---(n+1

N= nn—1)- - -1 ’

so if 2n/3 <p = n, then p is a factor in the denominator, and since
2p>4n/3=n+1, 2p is a factor in the numerator. The two p’s
cancel, and since 3p > 2n, there are no more factors of p in the
numerator. Thus all of the prime divisors of N are at most 2n/3, so

(13) H p= H p = 243,

pIN p=2n/3

the last inequality comes from applying (7).
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We will use (13) to get an upper bound for N. From Lemma 4 of
Section 21, we know that each prime power in the prime-power
decomposition of N is at most 2n. So, if p appears in the prime-
power decomposition to be a power greater than 1, then p?'= 2n and
p = V2n. There are at most V2n such primes, and since each prime
power is at most 2n, their contribution to the prime-power decomposi-
tion is at most (2n)¥*". All of the other primes appear to the power 1,
and from (13), their product is at most 2#"3. Thus

(14) (zn"’) < 2013(2 )V,
On the other hand, mathematical induction shows that
2n 22
as) (n ) = 2n
2n+2\ _ (2rn+2)(2n+1) (2;1) 2(2n +1) 22
(because (n+2)_ h+2)n+ D) \n)T R+l 2n

2n + 1 22ﬂ+2 2211+2
=20 2n +2Z’2n+2)’

so combining (14) and (15) we get

E < 24n/3(2n)v§ﬁ
2n ’

and this does not hold if n is too large. Taking logarithms, we get
2nIn2—-1In2n=<@4n/3)In2 + V2nln 2n

or
2n/3)In2=(V2r + 1) In2n=< (V2n + V2n) In 2n
=2V2Vnln2n
or \/_
3V2In2n
VRETh7

Since Vn increases more rapidly than In 2n, this inequality is false
for n sufficiently large: in fact, for n > 2787. The sequence of primes

2,3,5,7, 13, 23, 43, 83, 163, 317, 631, 1259, 2503, 9973,

each less than twice the one before, shows that for n < 2787 there is
always at least one prime between n and 2n.

We can use this to get another formula for primes like the one in
Theorem 1, but which does not depend on an unproved theorem [16].
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Choose any p, and forn=1,2, . . . , let p,., be a prime such that
(16) 220 < pq < 21

such a prime exists because of Theorem 2. Let

(17) up =10g"pn, v, =1log"(p, + 1),

where log'Vk = log, k and log™ k = log,(log™ ! k). Taking logarithms
to the base 2 in (16) gives

Pn <108 Pr41 <pnx+ 1,
and since p,,, + 1= 27+, we have
pr <log'p,s <log®(pu + )=p, + L

If we take logarithms to the base 2 of the preceding inequalities # times,
we have

Uy <Upsr < Upiy = Uy,

So, as in the proof of Theorem 1, § = lim «, and ¢ = lim », exist. Let

(r—1t)

exp k =2* and exp™ k = 2" k. Then from u, <8 <v, we get

exp™u, < exp™0 < exp"™uv,, Oor

pPa<exp™o<p,+ 1,

and we have [exp™0] =p , for all n. Restating this, we have proved

Theorem 3. There exists a real number 6 such that [2¢], [2¥], [22], . . .
are all prime.

Various other formulas for primes have been devised. For example,
we can use Wilson’s Theorem to get a formula for 77(x). Recalling that

(n=D!'+1
n

is an integer if # is prime and is not an integer if # is composite,

(n—l)!+1)=f(n)

cos*r (
n
is 1 if n is prime, and less than 1 if n is composite. Thus

a(x)= Y [f(n).

2snsx

Another striking result, also based on Wilson’s Theorem, appeared
in 1976 [6]: the set of prime numbers is identical with the set of
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positive values taken on by the following polynomial of degree 25 in
the 26 variables x;, x5, @ . . , X

(x11 + 2){1 = [x23%26 + X5 + X130 — X171

— [(x7x11 + 2x; + xy; + D(xg + X10) + X — Xa6)?

— [2x14 + X16 + Xp7 + X9 — X5)?

= [16(x11 + 1)%(xy; + 2)(xy4 + 1) + 1 — x6%)?

= [xs3(xs + 2)(x + 12 + 1 — x,5°

= [(x,% = Dxas® + 1 = x20°F — [16x38°x25%(xs* = 1) + 1 —x2,°)

= [(x1 + X217 (x2® = x1)* = D(x1s + 4x,X55)° + 1 = (X9 + X3%,)°

= g + X + 30 — X252 — [(62 — Do + 1 —xy5°F

— [xixg +xp + 1 = x5 — xgJ

= [x16 + x12(x; = x35 = D) + 2x2(2x1x74 + 2X; — X347 — 234 — 2) — Xxy5)2
= [y + xo5(x; = X3 = 1) + X19(2X1 236 + 22X — X136 — 236 — 2) — Xaa]?
= [xas + X162x12(x; — X16) + X20(2X1216 — X167 — 1) — x16213)°} .

To have a set of problems following that would be anticlimactic, and
so the text will stop here.
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Additional Problems

There is no quicker way of developing mathematical power and matur-
ity than by doing problems—#norf routine exercises, in which you substi-
tute numbers in some formula, or mimic some worked-out example in a
book, or differentiate yet another function, but problems where you
must apply what you know but do not know in advance how it will be
applied. There is no growth in repeating exercises, but there is growth
in looking at a problem of a sort never before seen and asking what
ideas could possibly be applied to it, then trying to apply them. It
is in considering problems that mathematicians, and mathematics,
develop. Of course, there is no growth without some pain, error, and
frustration, and there will be many problems—perhaps most—which
will defeat you. But that is the way. of it: no matter how good you are,
there will be problems you cannot solve; and no matter how bad you
are, there will be problems that are simple for you.

Some problems follow. They are listed by the section of this book in
which they could have appeared. In addition, there are 100 miscella-
neous problems, arranged very roughly in order of difficulty, without
regard to subject.

182
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Section 1

* 1.
2.

. (a) Prove that if a

Find two solutions of 299x + 247y = 52.

(a) Prove that (a, b) = (a, ¢) = 1 implies (a, bc) = 1.

(b) Prove that (a, b)=1and c|a imply (c, b) = 1.

c, blc, and (a, b)=d, then ab|cd.

(b) Prove thatif (a, ¢) =1 and (b, ¢) =d, then (ab, ¢) =d.

. Prove that ifd is odd, d|(a +b), and d’(a ~b), then d| (a, b).
. Prove that if p|(ra — b) and p|(rc —d) for some r, then p |(ad — bc).

6. If a, b, and c are positive integers, prove that alc, c|b, and (a, b) =1

together imply that a = 1.

* 7. Student A says, ‘‘I've been looking for a half hour for n such that n and
n + 20 have a greatest common divisor of 7 and I haven’t found one. I think
I'l} program it for the computer.’” Student B says, ““The computer won’t
find one, either.”” How did B know that?
8. Let (a, b, c) denote the greatest common divisor of a, b, and c.
(a) Prove that (q, b, ¢) = ((a, b), ¢).
(b) If (a, b) = (b, c) = (a, c) = 1, prove that (a, b, c) = 1.
(c) Show that the converse of (b) is false.
* 9, Is it true that (k, n + rk) = d for all integers r if and only if (k, n) = d?
10. Show that if 10|(3™ + 1) for some m, then 10| (3”*** + 1) for all positive
integers n.
Section 2

* 1. Complete and prove the

Theorem. An integer n is a kth power if and only if every exponent

. (a) Find the smallest positive integer n such thatn + 1, n + 2, n + 3, and

n + 4 are all composite.
(b) How many consecutive composite integers follow k! + 1?

. Define the least common multiple of a and b (written [a, b]) to be the

smallest integer m such that a]m and blm.
(a) Find [12, 30] and [pq, 2p*], where p and g are distinct odd primes.
(b) Show thata =p®ps%- - -ps® and b = p,/ ps*- - -pys imply

[a, b] =p1?ps - - -pi,

where g; = max(e;, f}) (e;=0andf;=0),i=1,2,---, k.
(c) Prove that ab = [a, bl(a, b).
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4. Let2,3,. .. ,p,bethe firstn primes. Let N=2-3-. . . -p,.fN =ab,

prove that a + b has a prime divisor greater than p,.
t 5. Establish the following test for primes. If# is odd, greater than 5, and there
exist relatively prime integers a and b such that
a—b=n and a+b=pip2 "Dk
(where py, pa, . . . , Px are the odd primes < n'?), then n is prime.
Section 3
* 1. How many different ways can thirty nickels, dimes, and quarters be worth
$5?

2. The following problem is at least 400 years old: Find the number of men,
women, and children in a company of 20 if together they pay $20, each man
paying $3, each woman $2, and each child 50¢.

3. A says, ‘‘“We three have $100 altogether.”” B says, ‘‘Yes, and if you had six
times as much and I had one-third as much, we three would still have $100.*"
C says, “‘It’s not fair. I have less than $30.”" Who has what?

4. Anna took 30 eggs to market and Barbara took 40. Each sold some of her
eggs at 5 cents per egg and later sold the remainder at the same lower price
(in cents per egg). Each received the same amount of money. What is the
smallest amount that they could have received? .

5. A man sold n cows for $n per cow. With the proceeds, he bought an odd
number of sheep for $10 each and a pig for less than $10. How much did the
pig cost?

Section 4

. Prove that if d|m and a = b (mod m), then a = b (mod d).

2. True or false? a= b (mod m) implies a*> = b> (mod m?).
3. (a) What can a square be, modulo 9?

(b) Is 314,159,267,144 a square?

4. (a) What is the largest integer with ten distinct digits that is divisible by 9?

(b) What is the largest integer with eight distinct digits that is divisible by
9?

S. Suppose that ar= b (mod m) and br = a (mod m) for some r. Show that

a*= b* (mod m) and find a nontrivial example of such a, b, r, and m.

6. Show that a®= a (mod 10) for all a.
* 7. Find an integer n such that n=1 (mod 2), n

0 (mod 3), and n=0
(mod 5). Can you find infinitely many?
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8. Show that no triangular number has as its last digit 2, 4, 7, or 9. (A triangu-
lar number is one of the form n(n + 1)/2.)

9. Provethatif p is a prime and p divides no one ofa;,a;,. . . ,a,-, nor any
of their differences, then a,, a,, . . . , a,—, are congruent (mod p) to 1, 2,
. , p — 1in some order.

10. If n = 31,415,926,535,897, then let
fn) = 897 ~ 535 + 926 — 415 + 031 = 904.

Induce a definition forf, and prove that if 7| f(n), then 7|n; if 11| f(n), then
ll|n; and if l3|f(n), then 13]n. Check 118,050,660 for divisibility by 2, 3,
5,7, 11, and 13.

Section 5

Solve 9x= 4 (mod 2401).
Find the smallest positive integer m such that 25|m and 3slm + 1.

W N -

. For which positive integers does
kx = 1 (mod k(k + 1)/2)

have a solution?

4. If (s, m) = 1, denote the ‘solution of sx = r (mod m) by r/s. Prove that
(r/s)t/u)y = (rt)/(su) (mod m)
and that
(r/s) + (t/u) = (u + st)/(su) (mod m).
5. Consider the system
x = q; (mod m;), i=1,2,. .. ,k,
where the moduli are relatively prime in pairs. Let
, M; = (mmy---my)im;, i=12, ...,k
Lets; denote the solution of M;x = 1 (mod m;),i = 1,2,. . . ,k. Show that
S=a;s; M, +assaMy+ - +agsMy

satisfies each of the congruences in the system.

Section 6

T 1. Let a’ denote the solution of ax= 1 (mod p),a=1,2,. .. ,p~ 1.
(a) Show that itis always true that (ab)'= a’b’ (mod p).
(b) Show that it is not always true that (a + b)'= a’ + b’ (mod p).
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2.

t 3.

~k
00

10.

It is known [12] that if p is prime, then

a’(p — D!'= a(p - 1)(mod p)
for all a. Show that this implies both that

a*~'= 1 (mod p) if (a, p) =1
and

(p — )!'= —1 (mod p).
(a) Prove that if r! = (—1)" (mod p), then
(p—r—DNDl= —1 (mod p).

(b) Find an example of such a p and r.

. (a) Show that

(k+ 1)) —k*= 1 (mod p),

fork=0,1,....
(b) Derive Fermat's Theorem from this.

. A composite n such that n](2" —2) is called a pseudoprime. There are

infinitely many, and the smallest two are 341 and 561. Verify that 561 is a
pseudoprime. :

. A composite n such that n | (@a" — a) for all a is called an absolute pseudo-

prime. The smallest absolute pseudoprime is 561. Show that 341 is not an
absolute pseudoprime by verifying that 341f(113** — 11).

. Calculate (2p — 1)! (mod p?) for some values of p and guess a theorem.
. Prove that if 2" # 1 (mod p), then

" +2m+ ---+(p— 1)"= 0 (mod p).

. If p is a prime, show that p + 2 is prime if and only if

4p - 1!+ 1) +p=0(modp + 2).

If p is an odd prime, and if (@, p) = 1, n|p — 1, and a = c* (mod p), prove
that

p I(a(p—!)/u - 1.

Section 7

L.

Cardano was the first to mention d(n) when, in 1537, he said that if p,, p,,
., px are distinct primes, then

dpips - p)—1=1424+224 ... 42kt
Verify that this is so.
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2. Descartes noted, in 1638, that
n n — p" — 1
o) - P =5
forn=1,2, . .. . Verify that this is so.
3. Let us call n a practical number if every positive integer less than or equal
to n is a sum of distinct divisors of n.
(a) Show that 12 is practical.
(b) Show that 10 is not.
(c) Discover a practical number greater than 12.
(d) Show that every power of two is practical.
4. Letf(n) denote the number of positive odd divisors of n.
(a) Make a table of f forn =2,3,4, . . ., 15.
(b) Show thatf(2"p™)=m + 1 (p an odd prime).
(c) Guess a formula for f(2"p,¢p,%- - p,) (p; an odd prime).
(d) Prove it by induction on k.
5. Suppose that n + o(n) is divisible by 3.
(a) Ifn is prime, show that n = 1 (mod 6).
(b) Can n be the square of a prime?
(c) If n = pq, p and g odd primes, show that one of them is 3 and the other
is congruent to 5 (mod 6).
Section 8

1. Numerologists have noted that prime years often coincide with or presage

w P~ W

~N O

ill-fortune. The reason, they say, is that prime numbers are the most defi-
cient of numbers. They point out that since 1910, prime years have been
1913 (World War I next year), 1931 and 1933 (the Great Depression), 1949
and 1951 (Korean War), and 1973 (oil embargo and recession). Since 1993,
1997, and 1999 will all be prime years, some numerologists are looking
forward to events as large as the end of the world in the last decade of this
century. Test the numerologists’ hypothesis by seeing which of the last few
years were the most abundant, both in the numerological and non-
numerological sense.

c—1
. If p¢is one of an amicable pair, show that.o(p®) = o (‘2 )

-1

. Show that pg (pq # 6) is deficient.
. Show that p¢, e =-1, is deficient.

. Prove that except for the pairs 3, 5 and 5, 7, the number between every
pair of twin primes is abundant.

. For what values of a is 3-5%-7 abundant?

. For what values of g is 29-11 abundant?

8. For what values of a is 29, p odd, abundant?
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9. Show that if (m, n) = 1 and n is abundant, then mn is abundant.
10. Let n = 2%Q2k*' — 1). If 2%*' — 1 is composite, show that n is abundant.

11.

Suppose that n =2°7(2#*' — 1) is perfect and g < 2°*! — 1 is prime. Show
that 2q is abundant.

12. Show that if m and n are an amicable pair,

(2 d-! )“‘ + (2 d- )“ =1

dim din

T 13. Show that o(1 +p) <1 +p +p?, and use this to conclude that p* can

never be one of an amicable pair.

14. Ifd >0, d|n and (d, n/d) = 1, thend is called a unitary divisor of n.

(a) What are the unitary divisors of 120? Of 360?

(b) Which integers are such that their only divisors are unitary divisors?
(c) If n =p,®py%---p;%, how many unitary divisors has n?

) If

2d=2rz,

where the sum is taken over the unitary divisors, d, of n, then n is
called a unitary perfect number. Find two such numbers.

15. Here is Euler’s original proof of Theorem 2. Fill in any missing details.

Letn = 2¥m be perfect, m odd. The sum, (28*' — 1)a(m), of the divisors
of n must equal 2n. Thus

mla(m) = (281 — 1)/2k+1,

a fraction in lowest terms. Hence m = (2¥*' — 1)c for some integer c. If
¢ =1, then m = 2**' — 1 must be prime, because a(m)=2¢"'. If ¢ > 1,
then o(m)=m + 2**' — 1)+ ¢ + 1. Thus

olm) _ 28+ (c 4+ 1) 2k+1
m m 2k+t — ]

a contradiction.

Section 9

1. Show that ¢(n + k) = 2¢(n) has at least one solution for each &:
if (k, 6) =1, take n = 2k;
if (k, 6) = 2, taken =k;
if (k, 6) = 3, take n = k/3;
if (k, 6) = 6, take n = k.

2. Show that the geometric mean of n and ¢(n) is not an integer if n =p¢,
a=2.
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. Find all n such that ¢ (2n) = ¢ (3n).

If n is composite, prove that ¢p(n)=n — n'’2,

. Show that if 6|n, then ¢ (n) = n/3.

. Let n = dm. Show that there are ¢(m) positive integers less than n whose

greatest common divisor with n is d.

. Let ¢2(n) = ¢p(p(n)), 3 (n) = $p(¢™(n)), and so on. Let e(n) denote the

smallest integer such that

¢(e(n:)(n) =2.

Calculate e(n) for
(@) n=3,4,567,8,9.
b) n=2%k=2.
() n=3% k=1
dnrn=23k=1,j=1.

. If (m, n)=p, how is ¢ (mn) related to ¢ (m)ep (n)?
. Show that ¢ (n) = n/3 if and only if n = 2*3/ for some positive integers k and

J-

. Prove the theorem that you guessed in Problem 9 of Section 9.
. Suppose we know that ¢ (1) =1,

#np) =pd(n)  if  p|n, and
dnp)=(p —Ne(n)  if  pfn.

Deduce from these formula for ¢(n).

. Ifa and b are positive integers, p and g are primes, and p > g, show that

d(p?) = ¢p(g”) implies a = 1.

. Calculate

> (~D™(d)
dln

for

(a) n =12, 13, 14, 15, 16.

(b) n =p, p an odd prime.

©)n=22k=1.

(d) n =p*, k=1 and p an odd prime.

(e) Guess a theorem.

14. Find all n such that 4{¢ (n).
* 15. Find a positive integer k, kK > 7, such that ¢ (n) = 2k is impossible.

Section 10

* 1.

If (a, m)# 1, for what values of ¢ is a‘ = 1 (mod m)?

2. Which of the integers from 1975 to 1985 have primitive roots?
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3. Find the smallest prime which has 10 for a primitive root.
. Show that 2 is not a primitive root of 31.
. Student A says, ‘“Look. These five pages of computation show that

19831983 = 1 (mod 1024). Isn’t that amazing?’’ Student B says, after a
glance, ‘*No, it’s not amazing—it’s wrong.’’ How did B know that without
checking the computations?

6. Show that if (n, p — 1) = 1, then x* = a (mod p) has exactly one solution.

-+

10. With the notation of Problem 9, prove that
ind, ab = ind, a + ind, b (mod p - 1).
T 11. With the notation of Problem 9, prove that
ind;g a”"= n ind, a (modp - 1).
12. Use the results of Problems 9 and 10 to solve 13x = 16 (mod 19).
13. Use the results of Problems 9 and 11 to solve x!3= 16 (mod 19).
14. Suppose that inds(p — 1) =r. Show that ind,(p — 2) =r + 1. What is x if
indg x =r + 2?
" 15. Prove the following generalization of Wilson's Theorem:
ﬁ [—I (mod m) if m has a primitive root
n = .
Aol 1 (mod m) otherwise.
(r,m)=1
Section 11

7. If n is a positive integer, define a~* by

a*= r (mod p) if and only if ra®= 1 (mod p). ~

Prove that if m and n are positive integers, a™a~"= a™~* (mod p).

. With the notation of Problem 7, prove that (a™)™" = a="™" (mod p).
. Itis well known that a’ = k if and only if ¢ = log, k. Let us define the index

of an integer (mod p) analogously. If g is a primitive root of p, then
g'= k (mod p) if and only if t= ind, k (modp - 1).
Calculate ind, kK (mod 19) fork=1,2,. . ., 18.

. Solve x> +x + 1= 0(mod 5), x> + x= 0(mod 5),and x* + x — 1= 0 (mod
5).

2. Find quadratic congruences (mod 11) with solutions 5, 6; 5, 7; and 9, 10.

3. Find the quadratic residues (mod 31).

4. Use Euler’s Criterion to calculate (mod 23) 2!, 3'!, 4't, 5"/ 22" 'and 21'".
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* 5. For which ofp=3,5 7,11, 13, and 17 is x*= —2 (mod p) solvable?

*T 1. Theorem 3 had for its hypothesis: ““If p and 4p + 1 are both primes . -. .

~

6.

(a) How many solutions does x?= 1 (mod 16) have?
(b) But don’t quadratic congruences have two solutions or no solutions?
What’s wrong?

7. Does x2= 53 (mod 97) have a solution? Does x>= 97 (mod 53)?
8. Suppose that p = 1 (mod 4). Then x2= —1 (mod p) has two solutions: call

them i and —i. Prove or disprove: a + bi = 0 (mod p) implies a= b= 0
(mod p).

. If p= 7 (mod 8) and (p — 1)/2 is prime, is (p — 1)/2 a quadratic residue

(mod p)?

- Suppose that p = g + an?, where p and g are odd primes. Is it true that

(alp) = (alg)?

Section 12

13

Examples are 7, 29 and 13, 53, and in each of these the third number in the
sequence (4:29 + 1 = 117 and 4-53 + 1 = 213) is not prime. Would a
computer search help in discovering longer sequences such that p, g = 4p
+ 1, r=4g + 1,s = 4r + 1, . . . are all primes?

. (a) Show that if p | (n* + 2an + b) for some n, then ((a®> — b)lp) = 1.

(b) Which primes can divide n? + 2n + 2?

. (a) Show that n® + (n + 1)2+ (n + 2)? = m? is impossible.

(b) Show thatn® + (n + 1)> + -+ - + (n + k)* = m? is impossible whenever 12
+ 22 + --- + k* is a quadratic nonresidue (mod k + 1).
(c) What are the first three such values of k?

. (a) Suppose that p = 5 is prime. Show that —3 is a quadratic residue (mod

p)if p=1or 7 (mod 12) and a nonresidue if p = 5 or 11 (mod 12).
(b) Suppose that p is an odd printe, p # 3, and p/a. Suppose that x3 = g
(mod p) has a solution . Then

(x = r)(x* + xr + /%) = 0 (mod p).

Show that x* + xr + r2= 0 (mod p) has two solutions different from r if
and only if p= 1 or 7 (mod 12).
(c) If p =5, show that the number of distinct nonzero cubic residues (mod
p) is
p—1 if p=35 or 11 (mod 12)
(p—-1)3 if p=1 or 7 (mod 12).

. If p=2"+1 is a prime, show that every quadratic nonresidue of p is a

primitive root of p.
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Section 13

*t 1. (a) Find a base b such that aa, = 34.

-+

-k

w A

(b) Find a base b such that aaa, = 1842.
(c) Show that it is impossible for aaa, = bb. for positive a, b, and c.

. What is the smallest positive integer n such that the last digit of # is 1 in the

bases b, b + 1, and b + 27

. (@) Show that 121, =42, 121, = 52, and 121, = 62,

(b) Guess and prove a theorem.
(c) Evaluate 169, in base 10 (b = 10).

. Show that 111, is not a perfect square inany base b,b=2,3, .. . .

. Prove that every positive odd integer can be represented in the form

n=dy+d-2+dy-22+ -+ +d,-2%,

whered; =1lor—1,i=0,1,. . . ,k, but the representation is not unique.

Section 14

1.

Show that the last digit of x", n =2, 3, . . .
(@) is0ifx =6

(b) isd4ifx=x

(c)isxifx=3,5,7,8, oreandn is odd.

With which digits can a prime end?

. If n is an even perfect number, n # 6, show that the last digit in its duodeci-

mal representation is four.

. (a) Letn be aninteger written in the base do, and let m be its reversal. Show

that e[(n — m).
(b) Generalize to any base b.

. Using the fact that 1001 = 7-11-17, develop tests for the divisibility of an

integer by 7, 11, and 17.

Section 15

* 1. Student A says, ‘*With enormous labor, | have divided 1 by 31415, and the

decimal has a period of 15707, half the maximum. It’s a good thing I didn’t
have to go all the way out to 31414 places.’’ Student B says, ‘‘You made a
mistake somewhere. Again.”” How did B know that without checking the
calculations?

. Inthe hexadecimal system (base 16, with digits 1,2, . . . ,9,A4, B, . . . ,

F) find the expansions of 1/2, 1/3, . . . , /F. -~

* 3. In which bases will the decimal representation of 7/60 terminate?
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4. Let (.aya3a, . . Jsquare b€ defined by
asl2t + ayl3? +ta R+ - ,0=<a <P
Does every number between 0 and 1 have such a representation? Is it
unique?
* 5. Both 1/13 and 1/14 have period 6. Find the next pair of consecutive integers
such that their reciprocals have the same period.
Section 16
T 1. Prove that if the sum of two consecutive integers is a square, then the
smaller is a leg and the larger is a hypotenuse of a Pythagorean triangle.
2. (a) Given a, how would you find b such that a* + b* is a square?
(b) Carry out such a procedure for a = 13 and a = 14.
T 3. Let the generators of a Pythagorean triangle be consecutive triangular num-
bers. Show that one side of the triangle generated is a cube.
4. Note that 4> —3>=7, 122 -52=7-17, and 8 — 152 = —7-23. Show that
a* + b* = c? and (7, abc) = 1 imply 7|(a* - b?).
% 5. Show how to determine all primitive Pythagorean triangles whose area is
numerically equal to k times its perimeter, k a positive integer.
Section 17
1. Given that x* +y*=z* has no solutions in integers, prove that it has no
solutions in rational numbers.
2. Show that x* + y¥# =z n=1,2,. . ., has no nontrivial solutions.

3. Suppose that we can show that x* + y” = z” has no nontrivial solutions for

any odd prime p. Conclude from this and Problem 2 that x" + y* = z* has no
solutions for any n = 3.

Show that x” + y* = z* implies p|(x +y — z).

Show that x*~' + y#»=! = z"~! has no nontrivial solutions unless p h)lz.

. Show that

X3+y3 4+ +xy +yz + 2% +xyz=0

has no nontrivial solutions.

. Show that there are infinitely many nontrivial solutions of

X" + yu — Zn+l
for any n = 1, namely those given by

x =(ac)™, y=(bc)", z=c’,
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where
c=a™+b™,
a and b are.arbitrary, and r and s are chosen to satisfy
rm*+1=(n + 1)s.
Does the last equation have infinitely many solutions in positive integers r,
s?
8. Find a solution of x* + y* = z5.
* 9, Find solutions to x" + y" =z"7",
10. Show that x" + y" = z” has nontrivial solutions if (n, m) = 1.

Section 18

1. Show that 4|(x'3 + y? + z?) implies that x, y, and z are even.
2. Verify that if n= 7 (mod 8), then n cannot be written as a sum of three
squares.
73. From Problems 1 and 2, show that n = 4¢8k + 7) for some nonnegative e
and k implies that n = x* + y* + z* is impossible.

4. A mathematician said in 1621 that 3n + I is not the sum of three squares if
n =8k + 2 or 32k + 9 for some k. Show that he was wrong.

"
“

Show that not every positive integer n can be written n = x* ~ y* for some
integers x, y.

6. Show that every positive integer n can be written

n=x>+y -z

for some integers x, y, z.

~t
~

. Show thatifn is the sum of two triangular numbers, then 4n + 1is a sum of
two squares.

8. Which integers can be written as the sum of two squares of rational num-
bers?

*t 9, Whichof2+1,2-3+1,2-3-5+1,2-3-5-7+ 1,. . . can be written as a
sum of two squares?

10. Is it possible to mimic the proof of Theorem 2 to prove a generalization: if
(—wlp) = 1, then there are integers x and y such that p =x2 + wy*?

Section 19

*t 1. Express 5,724,631 as a sum of four squares.

2. Tabulate the number of different representations of 1, 2, 3, . . . as sums of
four squares, and see if any theorem suggests itself.
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Which integers can be written as a sum of exactly four nonzero squares?

Fill in any missing details in Euler’s original proof of Lemma 2. Suppose
that (—1/p) = 1. Then there is an integer x such that 1 + x>= 0 (mod p). So,
suppose that (—1/p) = —1 and that thelemma s false. Then1 + 1 -2 =10
shows that (—2/p) = —1, and hence that (2/p) = 1. Then 1 + 2 — 3 = 0 shows
that (-3/p) = —1and that 3/p) = 1. In this way, 1,2,. . . ,p — 1 areall
quadratic residues (mod p).

If n >0 and 8| n, show that n is not the sum of fewer than eight squares of
odd integers.

Section 20

AL X +ye V2= (3 +2V2), calculate (xi/yi) — V2 for k=1, 2, 3, 4.

-+

*5.

(V2 =1.414213562 . . . .)

. (a) Show that x2 — Ny2 = —1 has no solutions if N = 3 (mod 4).

(b) Show that ifx,, y, is a solution of x? — Ny? = —1 with x; > 1, then uy, vy,
k=1,2,. . .are solutions of x2 — Ny? = 1, where

up + v VN = (x, + y, VN,

3. Show that if x* — Ny? = k has one solution, then it has infinitely many.

Let x4y =x, + ry,and Yy = x, +¥n,n =1,2,. . . . Show that x;> — ry;?
takes on only two different values if x42 — 1,2 =

Apply Problem 14 of Section 20to extend the sequence ofrational approxi-
mations to V2 found in Problem 1 to one more term.

Miscellaneous Problems

Prove that 6| (n® — n) for all positive integers n.

Prove that the sum of three consecutive cubesis always divisible by nine.

Show that (2" + (—1)"*!)/3 is an odd integer for n = 1.

1.
2.
3. Show that if a + b is even, then 24|ab(a? — b2).
4,
* 5

. A man came into a post office and said to the clerk, ‘‘Give me some
13-cent stamps, one-fourth as many 9-cent stamps, and enough 3-cent
stamps so this $5 will pay for them all.”” How many stamps of each kind
did he buy?

Construct a stamp problem for the future: a man bought some 25-cent
stamps, one-fourth as many 20-cent stamps, and enough 10-cent stamps to
make the total exactly $n. What values ofn, n = 1,2, . . . give a unique
solution in positive integers?

. Stamp problems can be endlessly varied: in a state with no sales tax,
bottles of scotch sell for $7 each, bottles of rum for $6 each, and bottles of
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11.

12.

T13.
14.

15.
16.

Section 23

vodka for $5 each. The same disagreeable man as in Problem 5 came into
a liquor store and said, ‘‘Give me some bottles of scotch, half as many of
rum, and some of vodka. Here’s $40. Keep the change—there won'’t be
any, har, har, har.”” What did he get?

. Show that the sequence 5, 12, 19,26, . . . contains no term of the form 2

or 2 —1.

. Induce a theorem from the following facts:

32 4 42 =52,
102 + 112 + 122 = 132 + 142,
212 + 222 + 232 + 242 = 252 + 26% + 277,
367 + 37% + 38 + 39% + 407 = 412 + 42% + 432 + 442
A palindrome is a number that reads the same backward as forward, such
as 3141413.
(a) How many two-digit palindromes are there?

(b) How many three-digit ones?
(c) How many k-digit ones?

Let us say that an integer is powerfu! if and only if p*|n whenever p |,n.
Prove that n = r*s® for integers » and s where s is square-free—that is, no
square divides s.

Ifa and b are positive integers, let us say that a divides b weakly (or, that a

is a weak divisor of b), written a [ b, if and only if p|a implies p|b for

primes p.

(a) Find examples of integers a and b such that a > b and af b.

(b) Prove that a|b implies a [ b.

(c) Prove thata [ b and b [ c implies a{ c.

(d) Prove that ab [ c impliesa [ cand b | c.

(e) Prove that acH be and (a, ©) [ (b, ¢) imply a [ b.

(f) Prove that a [ b implies (a, c)f (b, c) for all positive integers c.

(g) Prove that if there are integers m and n such that a“lf b™, then af b.

(h) Prove thata [ c and b [ c implyab | c.

(i) Which of (c) to (h) are false for ordinary divisibility of positive inte-
gers? Give examples.

Construct a formula for f such that f(n)is 1/2 if n is even and 1 if # is odd.

Induce a theorem from the following data:

I+ 14420 =2-32, 14424 434=2-7,
B+ 34+ 4t=2-132, 2043445 =2-19,
244 544 74=2-392, 344 42% 74=2-37%

Use mathematical induction to prove that 6% = 1 + 5n (mod 25).

A paper was written recently to show that x® + 117y% =5 has no solu-
tions [10]. It used the theory of algebraic numbers. Show that the
equation has no solutions by considering it (mod 9).



*17.

18.

*T19.

20.

21.

24.

25.

26.

*t 27.

23.

Additional Problems 197

Find the smallest integer n such that n is positive and 25|n, 36|n + 1,
and 49| n + 2.

Show that
> Vd = a(n)n.

din
When Ann is half as old as Mary will be when Mary is three times as
old as Mary is now, Mary will be five times as old as Ann is now.
Neither Ann nor Mary may vote. How old is Ann?
Show that if
a=r%-2rs —s?,
b =52 +s2,

c=rt+2rs—st

for some integers r, s, then a2 b2, ¢? are three squares in arithmetic
progression.

Pascal once wrote that he had discovered that the difference of the cubes
of any two consecutive integers, less one, is six times the sum of all the
positive integers less than or equal to the smaller one. Prove that he was
right.

. Show that if n = a® + b* = ¢* + d*> with b# d, then

_ (@ —=cP+(b—-dP)a+c)+®b-d)P
"= ab - dy ’
and hence that if » can be written as a sum of two squares in two distinct
ways, then n is composite.

Using the result of Problem 20, factor
(a) 533 =232 +22=22>+ 7,
(b) 1073 =322+ 7> =28 + 172,

Show that for any a and d such that (3d, m) = 1, the system
ax +(a +d)y=a + 2d (mod m)
(@+3d)x + (@ +4d)y=a + 5d (mod m)

1l

has the same solution.
If n = a®> + b*> + ¢*, with a, b, ¢ nonnegative, show that
(n/3)'? < max(a, b, ¢) < n'2,

Gauss proved that a regular polygon with s sides can be constructed with
ruler and compass if m = 2%, where a is an integer and n=1orn is a
product of distinct primes of the form 2* + 1. List all the regular
polygons with fewer than 40 sides that can be constructed with ruler
and compass.

12 4+22=3 -2, 243 =76 324 42 =132 - 122,
42 + 52 = 21* — 202. What happens in general?
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It is known that 8k + 3 = x% + y? + z2 has a solution for any & = 0.
(a) Show that x, y, and z are odd.
(b) Deduce that k& is equal to a sum of three triangular numbers.

(1/3)2 + (2/3) = (1/3) + (2/3)2. Is this astonishing?

(5 + 5/24)12 = 5 + (5/24)'2; are there other numbers like that?

(a) Find all a and p such that a®>= -2, ¢®* = 3, and a*= 4 (mod p) with
0<a<p.

(b) Show that a?>= 2, @®*= 3, and a*= 4 (mod p) is impossible with
0<a<p.

Ifp = 5is prime, show that p* + 2 is composite.

(a) Suppose that 0 = m < 121. If 210n + m is prime, show that m is

prime.

(b) Generalize: provethatif Py = pp,- - -p, (p; denotes the ith prime) and
0 = m <py4.?, then Pyn + m prime implies m prime.

(a) Find all primes p such that 3p + 1 is a square.

(b) Find all primes p such that 3p + 2 is a square.

. Fermat was sometimes as blind as the rest of us. He wroté to Roberval,

“‘Permit me to ask you for the demonstration of this proposition which I
frankly confess I have not yet been able to find, although I am assured that
it is true. If a, b are integers, and if

(1) a*+b*=2a + b)x + x*%,

both x and x?* are irrational.”’ Help Fermat out: show that the equation is
not satisfied for any integer x, unlessa =b = 0.

Apply the rational root theorem to complete the demonstration in Prob-
lem 35. Thatis, show that if (1) has no integer roots, then it has no rational
roots. What conditions on a and b guarantee that x* is irrational?

Ifn=(6m+ 1)(12m + 1)(18 m + 1), show that n — 1 is divisible by 36m.
Is .123456789101112131415 . . . a rational number?

10n + 7, and 10n + 9 are all prime are n = 1, 10, 19, 82, 148, 187, 208,
. . What do those numbers have in common and why?

36|10116 and 36|100116. Coincidence? Does 36|1000116? Almost any
pocket calculator can show that is true, but no pocket calculator can show
that 36|10" + 116 for alln = 2. You do it.

Bhaskara, in the Lilivati (1150 aD) asked for four numbers whose sum is
equal tothe sum of their squares, and gave the pretty answer 1/3 + 2/3 +
3/3 + 4/3 = (1/3)* + (2/3)* + (3/3)* + (4/3)*>. Find all solutions in positive
integers of 1/d + 2/d + c/d = (1/d)* + (2/d)* + (c/d)2.

It is fairly striking that 6* = 4 (mod 19) and 6° = 5 (mod 19). Show that a
necessary condition for a* = k (mod p) and a**'= k + 1 (mod p) is that
D l (k + 1)* —k**' and find another example.

Show that any proper divisor of an even perfect number is a deficient
number.
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Show that (2x]) = [x] + [x + 1/2]and (3x] = [x] + [x + 1/3] + [x + 2/3]. Can
you prove a general theorem?

Show that the last digit of every Fermat number 22"+ 1, is seven,
n=2,3....

Find all of the solutions of x? + y2 = (2x + y)?, and show that x* + y* =
(& + y)2)? is impossible in positive integers.

In (9] there is a report on a search for numbers with the property that
the sum of their squares is unchanged if their digits are reversed. The
example given, 172 + 26% + 872 + 492 = 942 + 782 + 622 + 712, is wrong.
Can you reconstruct the true equality for which this is a misprint?
Show that if

i a b
1 c¢c|=1,
c 1

thena=b=c=0.

February 1968 had five Thursdays. What other years before 2100 will
have such Februaries?

Several years ago today, a man borrowed an integer number of dollars
at a normal rate of simple interest. Today he repaid the loan in full with
$204.13. How much did he borrow, how long ago, and at what rate of
interest?

. (a) Show that 111 . . . 11 (n digits, all ones) is composite if n is

composite.
(b) Is the converse true?

Find all 17 solutions of

1,1_1
x y 6

in integers (positive or negative).

How many solutions does

, .

1 1 1
4 —-= =
x y N

have for a given positive integer N ?

Prove that the sum oftwin primes (thatis, 2p + 2, where p and p + 2 are
both primes) is divisible by 12 if p > 3.

. (a) Ifp is an odd prime, how many elements in the sequence

1-2,2-3,34,. . . ,p(p+1)

are relatively prime to p? .
(b) If p is an odd prime, how many elements in the sequence

1-2,2-3,34,. .. ,p%p*+1)
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are relatively prime to p?
(c) Any guesses for a general theorem?

Show that n? + (n + 1)2 = km? is possible only when —1 is a quadratic
residue (mod k).

Let f(x) be nonnegative and nondecreasing for x = 0. Let us say thatf is

semimultiplicative if and only if f{nm) = f(n)f(m) for all positive integers

m and n.

(a) Show that f(n) = n*, k a positive integer, is semimultiplicative.

(b) Prove that the product of two semimultiplicative functions is semi-
multiplicative.

(c) Show that if g(x) is nonnegative forx = 0, then n°*" is semimultiplica-
tive.

Ifa and b are positive integers, then a* ends with an even number of zeros,

and 106* ends with an odd number of zeros. Hence 106* = a® is impossible

in nonzero integers, and it follows that 10V? is irrational.

(a) Adapt the above proof to integers in the base b (b not a square) to
show that b'? is irrational.

(b) Show thatb'™ (b notan mthpower,m = 3,4, . . .)isirrational by the
same argument.

Consider the following lists:

List 1 List 2 List 4
1 9 17 25 2 10 18 26 4 12 20 28
3 11 19 27 3 11 19 27 5 13 21 29
5 13 21 29 6 14 22 30 6 14 22 30
7 15 23 31 7 15 23 31 7 15 23 31
List 8 List 16

8 12 24 28 16 20 24 28
9 13 25 29 17 21 25 29
10 14 26 30 18 22 26 30
11 15 27 31 19 23 27 31

Pick a number from 1 to 31—any number—and see which of the above
lists it appears in. If you add the numbers of the lists in which the number
appears, you will get the number you picked. Why does this trick work?

. Let P,=p,ps-'p, and a,=1+kP,, k=0, 1, ..., n—1, where

the p’s are the primes 2, 3, 5, 7, . . . in ascending order. Show that
(a;, a;) = 1ifi#j.

If n is an even perfect number, show that the harmonic mean of the
divisors of n is an integer.

(a) Show that the least residues of 1, 7, 7%, . . . , 7> (mod 36) are in
arithmetic progression.
(b) What are the least residues of 1, 7, 7>, 7%, . . . (mod 216)?

Show that 2r* — 3 is never a square, r =2, 3, . . . .
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In 1494, L. Pacioli said that 134217727 was prime. Show that he was
wrong.

Suppose that a, b, and ¢ have no common factor. Show that solutions to
ax +by +cz =1

are given by
x =rt +crm + nbld,
y =8t +csm — nald,
z=u—dm,

where m and n are arbitrary integers, » and s are such that ar + bs =
d = (a, b), and 7 and u are such that dr + cu = 1, and apply this to get
solutions of 7x + 8y + 9z = 1.

In a rectangular coordinate system, put a dot at the point (n, m) if and
only if n and m are relatively prime. Consider one-by-one boxes.

(a) Can any such box have all four corners dotted?

(b) Find a box with no corners dotted.

(c) Let p be an odd prime. In the row of boxes

(Lp+1)  @2,p+1) (p-Lp+1) (pp+1)

s.e

see

(1,p) (2,p) (p—1,p) (p, p)

how many have three corners dotted?

Let (x) denote the fractional part of x. That is, (x) =x — [x].
(a) Show that if (a, n) = 1, then the set of numbers

{aln), 2aln), . . . , {(n — Daln)

is a permutation of the set

Vn,2n, ... ,@n—1n.
(b) Show that if (a, n) = 1, then

E [a_k] _la-1xn-1

i " 2

Show that every n > 0 satisfies at least one of
n= 0 (mod 2) n= 0 (mod 3) n= 1 (mod 4)
n=3 (mod 8) n= 7 (mod 12) n= 23 (mod 24).

Show that 9** ends in 89.

If p is a prime and ap + b = ¢?,-then show that all values of k¥ making
kp + b a square are given by
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k =pn® *2cn +a,

where n is any integer.

If m > 1 is odd, show that 2™ + 1 is composite.

Prove by induction that 3*+2|10% - 1,n =0, 1,2, . . . .
2223 — 1) = 13 + 33
225 - 1) =1+ 33+ 53+ 73
2227~ 1) =134+ 33+ - - - + 153,

We might induce that every even perfect number, except 6, is a sum of
consecutive odd cubes, starting with 13. Is this so?

(a) Given n > 0, show that there is an integer m such that
((r + D2+ 22 = (m + D' +m'=,

(b) Can you always find an m such that
((n + D2+ 2P = (m + DV + m¥2?

Show that if n is an even perfect number, then H d is a power of n.
din

If n is composite and greater than 4, show that (n — 2)! = 0 (mod n).

Show that no power of 2 is a-sum of two or more consecutive positive
integers.

. Let f(n) denote the smallest positive integer m such that m! = 0 (mod n).

(a) Make a tableof fforn=2,3, . .., 20.

(b) Show that f(p) =p.

(c) Show that if p and g are distinct primes, then f(pq) = max(p, q).
(d) Show that if p >k, then f(p*) =kp.

Show that
n
2 k!
k=1
is never a square when n > 3.
Find nine integers in arithmetic progression whose sum of squares is a
square.

Let p; denote the ith prime. Show that P, =p,p, - - - p, + 1 is never a
square.

. Which positive integers are neither composite nor the sum of two

positive composite integers?

1000 = 1 (mod 37). From this, develop a test for the divisibility of an
integer by 37.

Although 9 is not the sum of two positive integer squares, it is the
sum of two positive rational squares. Find them.

. Suppose that we have a solution of
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abla + b)a —b) = c?

where a, b, and ¢ have no common factors.

(a) Show that a and & are both odd.

(b) Show that any two of a, b, (a + b)/2, and (a — b)/2 are relatively
prime.

(c) Conclude that each of a, b, (a + b)/2, and (a — b)/2 is a square.

(d) Put (a + b)/2=r* and (a — b)/2 =s*. What are a and b in terms of
r and s?

(e) Conclude that if there is a solution of ab(a? — b*) = ¢* where a, b, ¢
have no common factor, then there is a solution of

Euler showed that any odd perfect number must be of the form
p4a+1023

p an odd prime, a and Q integers. Fill in any missing details in this
sketch of his proof:

Letn =P,P, - - - P, be the decomposition of n into powers of distinct
odd primes. Let Q; = o(P;),i=1,2, . . . , k. Iif o(n) = 2n, then

ZPxPz"'PkZQJQs"'Qk-

Thus, one of Qy, Qs, . . . , Qr—say Q,—is double an odd number,
and the remaining ones are odd. Thus P,, P;, . . . P, are even powers
of primes. Also, P, = p*"*' for some prime p and integer a.

Write the positive integers in a spiral-like array as shown:

17 16 15 14 13
18 5 4 3 12
19 6 1 2 11
20 7 8 9 10
21 22 23...

If 1is at the origin of a rectangular coordinate system and n = 0,
(a) What integer is at (n, 0)?

(b) What integer is at (n, n)?

(c) What integer is at (—n, 0)?

(d) Where is 2n + 1)??

(e) Where is (2n)2?

(f) Where is 1000?

Show that the primes less than n? are the odd numbers not included in
the arithmetic progressions

rrt 4+ 2r, 2 +4r, . . . (up to n?

forr=3,5,7, .. .@upton—1).
(a) Find all x, y, z in arithmetic progression such that
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Section 23

xX2+xy +y2=2z°

and xy # 0.
(b) Find all x, y, z in arithmetic progression such that

x4+ kxy +y2 =272

and xy # 0.

Show that x" + y" = z" has no solutions with both x and y less than n for
any positive integer n.

Suppose that n* +n + 1 =p”, wheren = 1, p is prime, and r = 1.

(a) Show that p is odd.

(b) Show that if n = 1 (mod 3), then the only solution is n = 1, p = 3,
r=1.

(c) Show that r is odd.

(d) Show that if p # 3, then p = 1 (mod 3).

Let f(x) =a,x" + ap_,x""' + - - + a,. Suppose that a,, a,, and an odd
number of the remaining coefficients are odd. Show that f(x) = 0 has no
rational roots.

. (a) Show that if (a, p) = 1, n|(p — 1), and a**~"'"# 1 (mod p), then « is

not an nth power residue (mod p).
(b) Is 2 a fifth power residue (mod 31)?

. Show that n|(2" + 1) if n is a power of 3.
. (a) Show that n* + (n + 1)* = 3m?* is impossible.

(b) What is a sufficient condition for
n*+(n + 1) = km?

to have a solution for given &, & > 0?

Let m be square-free. (That is, m =p,p2- " "Dy, & product of distinct

primes.) Suppose that m has the property that p[m implies (p — l)lm.

(a) Show that m = 2, 6, and 42 have this property.

(b) Does any other m?

(c) How many others?

(a) Show that if » and s satisfy 5*s — 2%r = 1 and x = 5"s, then the last n
digits of x* are the same as the last n digits of x.

(b) Find such a number for n = 3.

Show that the sequence {2 + np}, p an odd prime,n=1,2,. . . , con-

tains an infinite geometric progression for any p.

100. Solve x(x — 31) =y(y — 41) in positive integers.
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Proof by Induction

In the text, the method of proof by mathematical induction is used
several times. The purpose of this section is to recall what the method
is, show some examples of how it operates, and give some problems for
practice.

Mathematics is notoriously a deductive art: starting with a collection
of postulates, theorems are deduced by following the laws of logic.
That is the way it is presented in print, but that is not the way that new
mathematics is discovered. It is difficult to sit down and think, “‘1 will
now deduce,”’ and deduce anything worthwhile. The goal must be in
sight: you must suspect that a theorem is true, and then deduce it from
what you know. The theorem you suspect is true must come from
somewhere. Just as in the other sciences, a new result can come at any
time, the mysterious product of inspiration, inspection, subconscious
rumination, revelation, or a correct guess.

* Exercise 1. Guess what f(n) is from the following data:

n |01 2 3 4 5
f() |1 01 4 9 16

205
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* Exercise 2. Guess what f(n) is from

012 3 4 5 6
1 2 5 10 17 26 37

n

f(n)

* Exercise 3 (optional). Guess a theorem about f(n):

n |1 2 3 456 17
f(n)\z -1 -2 -1 2 7 14

Since number theory is largely concerned with the positive integers,
some of its theorems are of the form, ‘“Such-and-such is true for all
positive integers n.’” Propositions like this can often be proved by
mathematical induction (or induction for short—we will not be con-
cerned with any other kind). This method of proof is based on the fol-
lowing property of positive integers:

If a set of integers contains 1, and
1) if it contains » + 1 whenever it contains r,
then the set contains all the positive integers.

This property is so fundamental that it is usually taken as a nonprov-
able postulate about the positive integers. It is applied when we want
to show that a proposition P(n) about the positive integer » is true for
alln, n=1,2, . .. .Examples of such propositions are

P(n):*n*+3n+2>Mm+12-5"

P.(n): “‘n(n + (n + 2) is divisible by 6.”

Py(n): “f(xy +xp+ - +x) = f(x) +f(x) + -0 +f(x,).7

Let S denote the set of positive integers for which P(n)is true. If we
can show that 1isin S and that if 7 isin S, thenr + 1isin S, then (1)
says that all positive integers are in S. Rephrasing this, we get the in-
duction principle:

If P(1) is true, and

if the truth of P(r) implies the truth of P(r + 1),
then P(n) is true foralln, n=1,2, . . ..

There is no necessity for an induction to start with 1; we could start
with 2, 3, 17, or — 12. For example, if P (3) is true and if the truth of P ()
implies the truth of P(» + 1), then P (n) is true forn =3,4, . . ..

* Exercise 4. Fill in the blank: if P(2) is true, and if the truth of P(r)
implies the truth of P (* + 2), then P (n) is true for
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To illustrate a proof by induction, we will take a well known exam-
ple. Let P (n) be the statement

“14+24+---+n=nn+172.7

We will prove by induction that P (1) is true for all positive integers n.
Exercise 5. What is P(1)? Is it true?

Suppose that P (r) is true; that is, suppose that
() 1+2+ - +r=r(r+1)2.
We wish to deduce that P (- + 1) is true. That is, we want to show that
3) 142+ - 4+@F+ D=0+ D +2)2
follows from (2). If we add r + 1 to both sides of (2), we get

142+ +r+ @+ D)=r(r+ D2+ +1)
=(r+l)<%+l>=(r+1)(r+2)/2,

which is (3). Hence both parts of the induction principle have been
verified, and it follows that P(n) is true for all positive integers n.

In any proof by induction, we must not forget to show that P(1) is
true. Even if we show that the truth of P(r) implies the truth of
P(r + 1), if P(1) is not true, then we cannot conclude that P(n) is true
for any n. For example, let P(n) be

n+(n+1)=2n.
Suppose that P(r) is true. That is, we assume that
“ r+@r+1)=2r.
Using this, we have
rFr+DH)+F+)=r+@F+D)+2=2r+2=2(r+1),

so P(r + 1) is true. So, if P(1) were true, it would follow that P(n) is
true for all positive integers n. Since P(1) is not true, we cannot so
conclude. In fact, P(n) is false for all n.

It should go without saying that in any proof by induction, we must
verify that the truth of P(r) implies the truth of P(r + 1). For example,
from the table

n

1 23 4 5 6
f(n) ]2 4 6 8

10 12
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we cannot conclude that f(n) = 2n for all n. In fact, f(7) = &, because

“the function that / had in mind when constructing the table was

—p

—k

_ (n—Dn —2)(n—3)(n—4)(n—5)n — 6)wm— 14)
f(n)=2n+ 6-54-3-2

Another form of the induction principle is sometimes used:

If P(1) is true, and
if the truth of P(k) for 1 =< k = r implies the truth of P(r + 1),
then P(n) is true foralln, n=1,2, . . ..

This is valid because of the corresponding property of integers: if a
set of integers contains 1, and contains r + 1 whenever it contains
1,2, . .. ,r, then it contains all positive integers.

Problems

1. Prove that
12+22+ - +n*=nn + 1)(n + 1)/6
forn=1,2, .. ..
2. 1? =12,
13 423 =32
13 +23 + 3% =67,
B+ 224+ 3+ 43 =102
Guess a theorem and prove it.
3. From Problem 2, or by guessing and induction, derive a formula for
B+334+5+ -+ 2k—1)3,

k=1,2,....
4. Prove that

12+ 123+ -+ U —-1n=1-(ln)

forn=2,3,....

5. 1,3, 6, and 10 are called triangular numbers:

Let ¢, denote the nth triangular number. Find a formula for z,,.
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. The Fibonacci numbers are defined by
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Suppose that a, =1 and a,,, =2a,+1,n=1, 2, ... . Prove by in-
duction thata, = 2" — 1.

. Suppose that a,=a,=1 and a,4; =a,+2a,-,, n=1, 2, . ...

Prove by induction that

_ 2n+‘] + (_I)M )

a, 3

Suppose that @, =a, =1 and a,,, = 3a, +a,_;. Prove that (a,, a,:;)
=1l,n=12,....

1:2:3:4=5 1,
2:3-4-5=112 -1,
34-5-6=19~1,
4:5-6:7=129%— 1.

Guess and prove a theorem. (Induction may not be necessary.)

. Guess and prove a formula for

Pr#+T7+ -+ (3n+ 1),

n=0,1,. ...

. Prove by induction that n(n + 1)(n + 2) is divisible by 6forn=1,2, . . . .
. Construct a formula for a function f such that

fM=fQ)=fB)=fAH=0, f(5=17.

. Let ¢, denote the nth triangular number. Consider the table

" 1 2 3 4 5
1, 1 3 6 10 15
8r,+1 19 25 49 81 121.
Are all those squares a coincidence?
Prove by induction that n> ~ n is divisible by 5, n =1,2, . . . .

frer =Fn + fars fi :fz'"*l-
Prove that f, is divisible by S, n=1,2, . . . .
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Computer Problems

Computers go well with number theory. The reason is that what com-
puters do best is long sequences of calculations, with a single number
as a result, and that is often just what is wanted to solve a problem. It
would be hard to solve a congruence like 314159x = 26535 (mod
27182818) by hand, but quite easy to program a computer—or even a
programmable pocket calculator—to find the solutions: have the ma-
chine do the labor of substitutinginx = 1,2,. . ., 27182818 and check
if the congruence is satisfied. Even if the machine is so slow that it can
do only 1000 substitutions and checks per second, it will take no more
than eight hours for it to do them all. Plug it in and let it run all night:
that is what computers like to do. It is the same when looking for
solutions to a diophantine equation or seeing if a large integer is prime:
the machine can grind through hundreds of millions of calculations
without complaint and produce results which human life would be too
short to obtain otherwise.

Applying computers to number theory can also sharpen program-
ming skills. Anyone can write a satisfactory program to print paychecks,
since most of the time is spent by the relatively slow printer. But when
a problem requires all the computing power of a machine, the algorithm
being used can make quite a difference. I have seen programs that

210
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factor nine-digit integers almost instantly and others that take months.
When the machine is being used to its utmost, there is pressure on the
programmer to push himself to his limits, and this can have only good
effects.

Some things which could be programmed are obvious, but neverthe-
less are listed below.

Write a program to:

Find greatest common divisors using the Euclidean Algorithm.
Solve ax + by = (a, b).
Determine if an integer is prime.

Factor integers (a good factoring subroutine is very helpful in many
problems).

Solve ax + by =c.

Solve simultaneous congruences using the Chinese Remainder
Theorem.

Solveax = b (mod m).

Calculate the least residue of a* (mod m).

Calculate d (n), o(n), ¢(n).

Determine if an integer is deficient or abundant.

Find primitive roots of an integer.

Find for which integers a given number is a primitive root.
Solve x2= g (mod m).

Solve ax? + bx + ¢ = 0 (mod m).

Evaluate (a/p).

Find the representation of an integer in one base, given its represen-
tation in another.

Find the period of the decimal expansion of 1/a.
Find representations of integers as sums of squares, cubes, or higher
powers.
Find solutions of x2 — Ny?2 =1, orx2 — Ny? =k.
Evaluate n(x).
There follow 25 other possibilities, listed essentially at random. I d o not
know how hard or easy, or how frustrating or rewarding, each one is.

They are examples of things that have been found interesting, and some
references have been included.
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1. Anamusing game, a bit like writing integers using exactly four 4s
(1=44/44, 2=4/4 +4/4, 3 =4 +4+ 4)/4, . . . ), is to write each
prime as a difference of two integers whose prime-power decompo-
sitions include just the smaller primes. For example, 5 = 32 — 22 and
7 =52 —2-3% The game gets so hard for larger primes—29 is 3-11-
132-19-23 — 212.5-7- 17—that machine help is needed. This may not be
easy to program. (Mathematical Reviews 49(1975):#4921.)

2. The answer to this question is known, but it illustrates how the
computer can be used to gather data from which inductions can be
made: What is 3(a — 1, n) in terms of n, where the sum is taken over
those integers from 1 to n which are relatively prime to n? (Mathe-
matical Reviews 49(1975):#2506.)

3. It is striking that 145 = 1! 4+ 4! + 5!, and the only other integers
k
satisfying d,d, - - -d,, = D.d,! are 1, 2, and 40585 (Mathematics Mag-

i=1
k k
azine 44(1971):278-279). Does did, - - - d\ everequal » 2% or > 347
- i=1 =1
4. If n =6, orif n= 1 (mod 6) is prime, or if » =3p where p= 5
(mod 6), then 3 |n + o(n). Are there any other such n, and do they fall
into classes?

5. The equation o(r)= o + 1) has 113 solutions for n < 107
(Mathematics of Computation 27(1973):676). It is probably too hard to
extend that table, but related equations like o(n + 1) =2g(n) or
o(n + 2) = o(n) might yield interesting numbers.

6. Lets(n) =o@) — n, s2(1) = s(s(r)), and s**1(n) = s(s*()). Cata-
lan’s Conjecture, which dates back to 1887, is that the sequence n, s(n),
s%(n), . . . eventually either reaches 1 or enters a cycle. The general
opinion now is that the conjecture is false and that for many » the
sequence is unbounded. A computer will never be able to establish
that, of course, but it can discover cycles. Fourteen cycles of period 4
exist (for example, 53(12496) = 12496) and there are longer cycles
(s?8(14316) = 14316). A machine might discover more. It is likely that
they would be rediscoveries though, so a variation of Catalan’s Conjec-
ture might be considered, say by defining #(n) = o(n) —n — 1.

7. An integer n is semiperfect if n is a sum of distinct proper di-
visors of n. For example, 104 = 2% - 13 is semiperfect because 104 =
52+26+ 13+8+4+ 1. A semiperfect integer is irreducible if it
is not the multiple of a smaller semiperfect number. For example, 104 is
irreducibly semiperfect, since none of 2, 4, 8, 13, 26, or 52 is semiper-
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fect. There is a theorem that n =2"p is irreducibly semiperfect if
2m < p <2™1. Are there other irreducible semiperfect numbers? If
there are, does some theorem exist to explain them? (Mathematical
Reviews 50(1975): #12905).

8. Theequationl +2+ -- - +n=12+2%+ - - - + k? has just four
solutions, three being (1, 1), (10, 5), and (13, 6). Find the fourth (n is
less than 1000), and if a program can do that quickly, adapt it to con-
sider related equations like 17+ 2"+ - - - + n" =19+ 2°+ - - - + k% or
1+2+---+n=a’+(@+ 1)*+ - - +k*> (Mathematical Reviews
46(1973): #3443, #8967).

9. Ever since the Egyptians were building pyramids, people have
been concerned with how to write fractions as sums of reciprocals. Itis
known that a/n is a sum of three reciprocals, given a, for all sufficiently
large n. When a = 4, such representations are known for all n < 107,
and when a = 5 forn < 922321. Tables of solutions for those values, or
fora =6, 7, . . . might disclose interesting patterns. And they might
not, but one never knows until one tries (Mathematical Reviews
44(1972): #6600, Mathematics Magazine 46(1973):241-244).

10. Given sets of integers A = {a,, a,, . . . , ay} and B = {b,, b,,
. . .,bi},define A + Btobe {a; + b;} and A — B tobe {a; — b;}, where
i=1,2,...,nandj=1,2, ...,k Forexample, if A = {1, 2, 3},

then A+A=1{2,3,4,5,6}and A -A={-2, —-1,0, 1, 2}. J. H.
Conway conjectured that the number of elementsinA — A is never less
than the number of elements in A + A. This is false (Mathematical
Reviews 40(1970): #2635). One counterexample is {1, 2, 3, 5, 8,9, 13,
15, 16}. Other counterexamples could be searched for, but it might be
more interesting to investigate sets like (A + A) —A and A + (A — A).

11. Let f(n) =n — @), f3(n) =f(f(n)), and f**(n) = f(f*(n)), and
consider the sequence n, f(n), f2(n), . . . . Since f(n) <n, it always
reaches 1. For example, if » = 100, the sequence is 60, 44, 24, 16, 8, 4,
2, 1: eight steps are needed. Let s(k) be the smallest integer which
reachies 1 in k steps. The first few values of s are

k |23 4 5 6 7
s(k)| 4 6 10 18 30 42

and when factored, they are 2-2,2-3,2-5,2-3-3,2-3-5, and
2 -3 -7. Could anyone have so little curiosity as to not want to know if
s8 was2-3-5-7,2-3-3-5,0r2-3-11? These sequences, analo-
gous to the sequences in Catalan’s Conjecture, have yet to be investi-
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gated, I believe, though the sequences n, ¢(n), d(¢p(n)), . . . have been
studied by many writers.

12. Generalize Wilson’s Theorem by looking at the values of
2p — 1! (mod p?), Bp — 1)! (mod p3), (4p — 1)! (mod p*®), . . . . The
resultis known but not easy to prove: with the aid of a machine it could
be rediscovered (Mathematical Reviews 42(1971):#4477). One might
then generalize the theorem in a different way, say by looking at
a@+1). . .(@+p)(modp).

13. Let s(n) = E (r, n). The first few values of this function, first

r=1
studied by S. S. Pillai in 1933, are 1, 3, 5, 8, 9, 15, 13, 20, 21, and 25.
Properties of this sequence might be investigated. It surely has some,
sinces(n) —o(n)is0,0,1,1,3,3,5,5,8,8forn=1,2,. . .,10,and
can that be coincidence? (Mathematical Reviews 48(1974): #2508).

14. A search in 1972 for solutions of a(x® — 1)/(x — 1) = y™ with
l<a<x=10,n>2,andm = 2vyieldedonlyn=a=4,x=7,m =2,
andy = 40 (Mathematical Reviews 46(1973): #1703). Itis quite possible
that there are no others, but it might be fun to put @ = 11 and start
looking.

15. Triangular numbers (1, 3,6, 10, . . .) have the formn(n + 1)/2.
Palindromes (11, 232, 36763) read the same backward as forward. Find
some palindromic triangular numbers (Fibonacci Quarterly 12(1974):
209-212), or, if you do not like to repeat work already done, find
palindromic pentagonal numbers.

16. Perfect numbers (those such that o(n) = 2n) and superperfect
numbers (those such that o(o(n)) = 2n) have been investigated. But no
one has looked into superduperperfect numbers (those such that
o(o(a(n))) = 2n), and there may not even be any. With a good sub-
routine for evaluating o(n), it shouldn’t be hard to find any that exist,
and if there are none, to find solutions of variants like a(o(a(n))) =
3n or a(o(o(o(n)))) = 16n.

17. The congruences no(n) = 2 (mod ¢(n)) and ¢(n)d(n) = —2 (mod
n) are both true if n is a prime. Find composite solutions. The answers
are known (Mathematical Reviews 50(1975): #2049), but there are other
such congruences, like ¢(n)a(n) = —1 (mod n?), that no one has looked
at.

18. If n =p,&p,> - - - p;*, define f by f(1) =2 and f(n) = 1+ e,p, +
e.p, + - - - + ey See what happens to the sequences n, f(n), f(f(n)),
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. . . for various n. The answer here is also known (Mathematical Re-
views 50(1975): #220), but letting g(rn) = e\p, +ep, + - - - +e,p; O
1 + 2(eyp; + espy + - - - + expy) Would lead to sequences that might be
dramatically different.

19. All of the integers n such that ¢(n) = ¢(n + 1) are known up to
2792144 (Mathematics of Computation 29(1975):321), and there is only
one integer in that range such that ¢(n) = ¢(n + 1) = ¢ + 2). To ex-
tend the table of solutions beyond 2792144 would take a powerful ma-
chine, but equations like ¢(n) = ¢p(n + 2) are mostly uninvestigated,
and triplets such that ¢(n) = ¢ + 2) = p(n + 4) or p(n) = + 3) =
¢(n + 6) would be picturesque.

20. There are many more n such that d(r) =d(# + 1), and in fact
triplets are common, the first being d (33) = d (34) = d (35) = 4. It would
be. interesting to know where the first quadruplet, quintuplet, . . .
were.

21. Every integer greater than 20161 is a sum of two abundant num-
bers [13]. What is the largest integer that is not the sum of 3, 4, 5, . . .
abundant numbers? )

22; Given n, let a, be its least residue (mod r) and let
s(n)y=a;+a, + - - * + a,. The first few values of s(n) are

n |1 23 456 7 8 910 11 12 13
s(n) |0 01 1 4 5 8 8 12 13 22 17 28

which looks irregular, but there are regularities: for example, it has
been known for along time thats(n) —s(n — 1) + o(n) = 2n — 1 (Math-
ematical Reviews 50(1975):#7014). It would be interesting to have data
about solutions of equations like s (1) = n, s (n) = 2n, s (n) = hn/2, and so
on; some discovery might be waiting to be made.

23. Let L(r) = o(n) — (m + 1); L(n) is the sum of the proper divisors
of n. f Ln) =n and L(n) = m, then m and n are a reduced amicable
pair. They have been tabulated up to 100000 (Mathematics of Computa-

.tion 25(1971):923-925). It would be possible to carry the tabulation

further, or to investigate variations. For example, if » is even, let K (1)
be the sum of the unobvious proper divisors of n. That is,
K(n)= o(n) — (n + n/2 + 1). Continuing in a parody of high academic
style, define severely reduced amicable pairs as those integers m and
n such that K(m) =n and K(n) = m. Then go to it: a whole new field
lies unexplored before you.

24. Carmichael’s Conjecture that ¢(x) = n never has exactly one so-
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lution if » = 2 will probably not be settled soon. If such an n exists, it is
greater than 10*° (Mathematical Reviews 49(1975): #4917), and those
numbers are too large for even the most powerful computer to handle.
For any n, there are only a finite number of solutions, and a table exists
(Mathematical Reviews 41(1971): #5291) giving themupto n = 1978. A
large enough machine could extend that table, and even a small one
could compile a table of solutions of o(x) = n, which also has only
finitely many solutions for given n.

25. Every positive integeris a sum of four squares and of nine cubes.
What if squares and cubes are mixed? It is probably false that every
positive integer is a sum of a cube and three squares, but how many
squares are needed so that every integer is a sum of two cubes and
some squares? It is true that every positive integer is a sum of eight
cubes and a square, but can it be done with seven cubes and a square?
Although a computer cannot prove any theorems, it can indicate
what theorems to try to prove. :



Appendix

Factor Table for Integers
Less Than 10,000

The following table gives the smallest prime factor of each odd positive
integer n, 3 = n < 9999, not divisible by five. The numbers across the
top of each column—1, 3, 7, 9—give the units’ digit of » and the
numbers down the side give the thousands’, hundreds’, and tens’ digits
of n. A dash in the table indicates that n is prime.

For example, reading across line 40 of the table, we see that 401 and
409 are prime, 403 is divisible by 13, and 407 is divisible by 11. With the
aid of the table, the prime-power decomposition of any integer less than
10,000 (and of any even integer less than 20,000) can be quickly deter-
mined. For example, take 759. From line 75 of the table, we see that
3]759, and a division shows that 759 = 3 - 253. From line 25 of the
table, 11|253, so 759 = 3 - 11 - 23. Line 2 of the table shows that 23 is
prime, so we have the prime-power decomposition of 759.
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1379 1379 1379 1379
0 —— 3140 |—1311— |80 | 311 3— {120 {— 317 3
l|———— | 413 7 3— |81 |— 319 3 {121 | 7——23
2! 3—3— |42 |—373 |8 |——— (122} 3— 3—
3{—3— 3|43 |——19— |8 |3 73— [123|— 3— 3
4| ——— 7 | 44| 3—3— |84 (293 7 3 124 |171129—
50 3—3— | 45|11 3—3 {8 |23——— 125} 3 7 3—
6| —3—3 |46 |——— 7 |8 | 3— 311 |126 {13 3 7 3
7|—— 7— | 47| 311 3— |87 |13 3— 3 |127 |3119——
8 3—3— 48|13 3—3 |8 |——— 7 |128} 3— 3—
91 73— 3|49 | —17 7— {89 | 319 329 {129 |— 3— 3
0|——m—— | 5| 3—3— {9 (17 3— 3 {130 |——— 7
11 3—3 7 (5173113 ;91 |—11 7— (131} 313 3—
12|11 3— 3 | 52 ——1723 { 92| 313 3— {132 |— 3— 3
13 — 7—— |53} 31337 (93| 7 3— 3 j133 {1131 713
14| 311 3— | 54 | — 3— 3 | 94| —23—13 {134 | 317 319
I5{—3—3|5:{19 7—13 | 95| 38371357 323 3
16 7——13 | 56 | 3— 3— | 96|31 3— 3 {136 {—29—137
17y 3— 3— | 57{—3— 3 |97 |— 7—11 {137 3— 37
18 — 311 3| 58| 711—19 | 98| 3— 323 |138 |— 319 3
9 ———— | 9| 3—3— |99 — 3— 3113913 711—
20{ 3 7 311 |60 |— 3— 3 (100| 71719— {140 | 323 3—
21— 3 73|61 |13——— |101| 3— 3— |141 |17 313 3
2 13——— | 62 37 317 {102|— 313 3 {142 | T———
23] 3— 3— | 63— 373103 ——17— |143 | 3— 3—
24 — 313 3 | 64| ———11 |104 | 3 7 3— |144 |11 3— 3
25{ — 11— 7| 65] 3— 3— |105; — 3 7 3 {145 |——31—
26 3— 3— | 66 |— 323 3 (106 | ——11— |146 | 3 7 313
227 — 3— 3| 67 |[11—— 7 {107 | 329 313 |147 |— 3 7 3
28| —— 717 | 68| 3— 313 108 {23 3— 3 |148 | ————
29! 3— 313 | 69 | — 317 3 {109} ——— 7 {149 | 3— 3—.
30 73—3|70}—19 7— j110} 3— 3— |150 |19 311 3
31 ———11| 71} 323 3— |111 |11 3— 3 |151 |—1737 7
32y 3173 7| 7247 3— 3{112}19— 7— {152} 3— 311
3By — 3— 3| B|17T—11— 113} 311 317 |153 |— 329 3
4111 7—— | 74 3— 3 71114 7 331 3 {154 |23 — 7—
35| 3— 3— | 15— 3— 3115y ——1319 {155| 3— 3—
36{19 3— 3| 76 | — 713— | 116 | 3— 3 7 {156 | 7 3— 3
37y 7—13— | 77 3— 319|117 | — 311 3 |157 |—1119—
38 3— 3— | 78|11 3— 3118 — 7—29 {158 | 3— 3 7
39117 3— 3| 79| 713 —17}119| 3— 311|159 |37 3— 3
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1379 1379 1379 1379
160 | — 7—— (200 3— 3 71240 7 329 3|280| —— 753
161 | 3— 3— |20l | — 3— 3241 | —19—41|281| 329 3—
162 | — 3— 31202143 7——|242{ 3— 3 7|28 7 311 3
163 { 723 —11 {203 | 319 3— 243 {11 3— 3[283 {19——17
164 | 331 317 |204 | 13 323 3244 | — 7—31{284| 3— 3 7
165 |13 3— 3 1205 7—1129.{245| 311 3—|285|— 3— 3
166 [11——— 1206 | 3— 31246 |23 3— 3|286|— 74719
167 | 3 7 323 1207 {19 331 3|247| 7——37|287| 313 3—
168 141 3 7 31208 ——-—— 1248 | 313 319|288 |43 3— 3
169 19— —— 1209} 3 7 31249 |47 311 3289 711—13
170 | 313 3— |210 |11 3 7 3 {250 |41—2313{290 | 3— 3—
171129 317 3 {211 | ——2913 {251 | 3 7 311|291 |41 3— 3
172 | ——11 7 | 212} 311 3— 252 | — 3 7 3}292|2337—29
173 | 3— 337|213 | — 3— 3253 | —1743—293| 3 7 3—
174 | — 3— 3 {214 | ——19 7 (254| 3— 3—[294{17 3 7 3
175 17— 7— | 215 3— 317 {255 — 3— 3| 295 |13——11
176 | 341 329 1216 | — 311 3 {256 | 131117 7|29 | 3— 3—
177 7 3— 3 {217 | 1341 7— |257| 331 3—{ 297 |— 313 3
178 | 13——— 1218 | 337 311 [258 |29 313 3| 298 [ 111929 7
179 311 3 7{219| 7 313 31259 | —— 7231299 | 341 3—
180 | — 313 3220 {31 ——47 |260 | 319 3—| 300 | — 331 3
181 | — 72317 {221 | 3— 3 71261 | 7 3— 3|301 | —23 7—
182 | 3— 331|222 | — 317 3 |262| —433711{302{ 3— 313
183 | — 311 3 1223 |23 7—— {263} 3— 3 7{303| 7 3— 3
184 | 719—43 224 | 3— 313 {264 |19 3— 3| 304 | —1711—
1851 317 311 | 225 | — 337 3{265|11 7——| 305 | 343 3 7
1861 — 3— 31226} 731—— |266| 3— 317|306 | — 3— 3
187 | ———— 1227 | 3— 343 {267| — 3— 3!307 |37 717—
18137 3—1228| —3— 3|268] 7———|308| 3— 3—
189 |31 3 7 31229 {29——11]269| 3— 3—|309 |11 319 3
190 | —11—23 /230 4 3 7 3— (270 ({37 3— 3| 310 72913 —
191 | 3— 3191231 {— 3 7 3 |271 | ——11—| 311 | 311 3—
192 V17 341 3 1232 | 11231317 |272| 3 7 3—|312|— 353 3
193 4 ——13 74233 | 3— 3— 273\ — 3 7 3|313{3113—43
194 1 329 3— 1234 | — 3— 3274 —1341—|314| 3 7 347
195 | — 319 3 1235 | —13— 7 [275] 3— 331{315|23 3 7 3
196 13713 711 (236 | 317 323|276 {11 3— 3316 |29———
197 1 3— 3— 1237 | — 3— 3 (277 |1747— 7]317| 319 311
1981 73— 312388 — 7—1278) 311 3—|318|— 3— 3
199 |11 ——— {239 | 3— 3—|279| — 3— 3|319|—3123 7
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1379 1379 1379 1379
320 3— 3— 360 |13 3— 3|400| ———19(440| 3 7 3_—
321113 3— 3361 {23—— 7(401| 3— 3— 144111 3 7 3
322 —11 7— 362 | 3— 319|402 | — 3— 3442 |—_—_1943
323 | 353 341 {363 | — 3— 3403293711 7 {443 | 311 323
324 7 317 3 {364 {11— 741|404 313 3— (444 |— 3_—_ 3
325 ————(365| 313 3—|405|— 3— 3445 |—61— 7
3261 313 3 7 {366) 7 319 3|406 3117 713 {446 | 3— 341
327 | — 329 3 1367 | ———13(407 | 3— 3— |447 |17 311 3
328117 71911 (368 | 329 3 7(408 | 7 361 3 |448 |—— 767
329 337 3— 1369 — 3— 3409 | ——17—= {449 | 3— 311
30— 3— 31370 — 711—|410 | 311 3 7{450| 7 3— 3
331 7—31— 371 347 3—| 411 |— 323 3 |451 |13 ———
3320 3— 3— (372161 3— 3412 |13 7—— |452| 3— 3 7
333 — 347 31373 7—37—|413 | 3— 3— {453 (23 313 3
334 | 13— —17 {374 319 323|414 {41 311 3 |454 |19 7T——
3350 3 73— 375|11 313 3|415| 7——— |455| 329 347
336 | — 3 7 31376 | —53——|416 | 323 311 {456 |— 3— 3
337 | —— 1131 |377 | 3 7 3— 417 143 3— 3 {457 | 7172319
338 317 3— (378 {19 3 7 3| 418 |37475359 |458 | 3— 313
339} — 343 31379 {17——29(419| 3 7 3131459 |— 3— 3
340 | 1941— 7 (380 | 3— 331|420 |— 3 7 3 {460 |43 —1711
341 3— 313 1381 {37 311 3|421 |—11—— {461 | 3 7 331
342 111 323 3 {382 | ——43 7422 | 341 3— |462 | — 3 7 3
343 1 47— 719|383 | 3— 311423 |— 319 3 {463 [1141 ——
344 1 311 3— |384 |23 3— 3424 |——31 7 {464 | 3— 3—
35| 7 3— 31385 |—— 717|425 3— 3— |465|— 3— 3
346 | ———— |386 § 3— 353|426 |— 317 3466 |59—13 7
347 | 323 3 7 (387 | 7 3— 3|427 |—— 711 |467 | 3— 3_—
348 |59 311 3 {388 | —1113—[428 | 3— 3— |468 |31 343 3
349 | — 713 — 1389 ) 317 3 7429 | 7 3— 31469 |—13 737
350 | 331 311|390 {47 3— 3(430 |11135931 {470 | 3— 317
350 | — 3— 34391 {— 7—— 431} 319 3 7{471| 7 353 3
352 713—— 1392 | 3— 3 — (43229 3— 3 {472 |——29__
353} 3— 3—{393 |— 331 3|43 161 7T—— {473 | 3— 3 7
354 | — 3— 3 394 | 7T——11/(434{ 343 3— (474 |11 347 3
355 (5311—— (395 | 359 337143519 3— 3475 |— 767—
356 | 3 7 343/396 {17 3— 3436 | 7—1117 |476 | 311 319
357 1 — 3 7 3|397 11294123 |1 437 | 3— 329 (477 |13 317 3
358 | —— 1737|398 | 3 7 3— 438 |13 341 3 (478 | 7———
359 3— 359|399 |13 3 7 3|439{—23—-53|479| 3— 3—
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1379 1379 1379 1379
480 | — 311 3 (520 | 71141 — |560| 313 371 {600 |17 3— 3
481 | 17——61 521 | 313 317 |561 |31 341 3 |601 | — 71113
482 | 3 7 311522 {23 3— 3 |562| 7—1713 |602 | 319 3—
483 | — 3 7 3{523 |———13 |563 | 343 3— |603 |37 3— 3
484 147293713 [ 524 | 3 7 329 |564 | — 3— 3 |604 | 7——23
485 | 323 3431525 {59 3 7 3 |565| ———— |605| 3— 373
486 | — 331 3]526 1—192311 |566 | 3 7 3— |606 |11 3— 3
487 | —11— 7527 | 3— 3— |567 |53 3 7 3 |607| 13—59—
488 | 319 3— {528 |— 317 3 [568 |13—11— {608 | 3 7 3—
489 |67 359 3529 {1167— 7 [569 | 3— 341 {609 |— 3 7 3
490 |13— 7— 1530 | 3— 3— |570 | — 313 3 {610 | —173141
491 | 317 3— | 531 {47 313 3 |571 | —29— 7 {611 | 3— 329
492 | 7 313 3532 |[17— 773 |572 | 359 317 |612 [— 311 3
493 {—— 111533 | 3— 319|573 |11 3— 3 |613 {——17 7
494 | 3— 3 71534 |7 3— 3|5714| —— 7— |614 | 3— 311
495 | — 3— 31535 |—531123 |575| 311 313 |615 |— 347 3
496 {11 7—— {536 | 331 3 7 (576 | 7 373 3 [616 |61 — 731
497 | 3— 313|537 |41 319 3 |577 (292353 — |617 | 3— 337
498 |17 3— 3538 |— 7—17 |578| 3— 3 7 |618 | 7 323 3
499\ 7—19—1539{ 3— 3—|579| — 311 3 |619 {4111 ——
500 | 3— 3— /540 {11 3— 3 [580| — 7—37|620] 3— 3 7
501 |— 329 3541 | 7——— |581| 3— 311 (621 |— 3— 3
502 | —— 1147|542 | 311 361 |582| — 3— 3 [622 |— 713—
503 | 3 73— {543 |— 3— 3|583| 71913 — {623 | 323 317
504 |71 3 7 3544 |——13— |584| 3— 3_— 624 {79 3— 3
505 | —3113—|545| 3 7 353 |585| — 3— 3 |625| 713—11
506 | 361 337|546 (43 3 7 3|586| —11—— |626 | 3— 3—
507 |11 3— 3{547 |—13—— |587| 37 3—|627|— 3— 3
508 | — 13— 7{548 | 3— 311 |588|— 3 7 3 (628 [1161—19
509 | 311 3—|549 {17 323 3.|589|4371—17 |629 | 3 7 3—
510 | — 3 3!550|——_— 7[590] 3— 3191630 — 3 7 3
511 19— 71| 551 | 337 3— |591] 23 361 3]631| —59—71
512 347 323|552 | — 3— 3|592|31—— 7{632| 3— 3—
513 7 311 3|553|—11 729|593| 317 3— 63313 3— 3
514 1 §5337—19| 554 | 323 331|594| 13 319 3634, 17—117
515] 3—.3 7!555] 7 3— 3|595| 11— 759|635 3— 3—
516 | 13 3— 3| 556 |67—19— | 596| 367 347|636 — 3— 3
517 — 731—1 557! 3— 3 7(597| 7 343 3{637|23— 7—
5181 371 31|55 | — 337 3598 —31—53|638| 313 3—
519129 3 3|559|— 72911|599| 313 3 7]639} 7 3— 3
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1379 1379 1379 1379
640 [ 37194313 {680 | 3— 311 (720 |19 3— 3 {760 |11—— 7
641 | 311 3 7,681 | 7 317 3 |721 |—— 7— |761 | 323 319
642 | — 3 — 3682 |19——— |722 | 331 3— 1762 |— 329 3
643 159 74147 {683 3— 3 7 (723 | 7 3— 3 (763 [1317 7—
644 | 317 3— |684 | — 341 3 |724 | 13— —11 764 | 3— 3__
645 | — 311 31685{13 7—19 |725| 3— 3 7|765| 7 313 3
646 | 72329 — 1686 | 3— 3— |726153 313 3 |766 |477911 —
6471 3— 3111687 | — 313 3 |727 111 71929 |767 | 3— 3 7
648 | — 313 3 |688 { 7—7183 (728 | 3— 337|768 |— 3— 3
649 | —437367 1689 | 361 3— |729 123 3— 3 (769 |— 743 —
650 | 3 7 323 (690 (67 3— 3 (730 | 767—— [770 | 3— 313
65117 3 7 34691 | —31—11 731 371 313|771 |11 3— 3
652 | —1161— |692 | 3 7 313 (732 | — 317 3 (772 | 7——59
653 | 347 313 {693 129 3 7 3 (733 ——1141(773 | 311 371
654 (31 3— 3694 1153 —— (734} 3 7 3—|774 | — 361 3
655 | ——79 71695 | 317 3— |735{ — 3 7 3|775 |23 ——__
656 | 3— 3— 1696 | — 3— 3 |736|173753—|776 | 3 7 317
657 — 3— 31697 | —19— 77371 373 347|777 |19 3 7 3
658 | —29 711|698 | 3— 329|738 {11 383 3|778 |314313 —
659 319 3— 1699 | — 3— 3(739}/19—13 7779 | 3— 311
660 | 7 3— 31700 | —47 743|740} 311 331|780 |29 337 3
661 (111713 — {701 | 3— 3— (741 | — 3— 3|781 |7313— 7
662 | 337 3 7(702| 7 3— 3|742{4113 717|782 | 3— 3—
663 (19 3— 31703 1791331— (743 3— 343|783 |41 317 3
664 |29 71761 [[704 1 3— 3 7| 744} 7 311 3|784 |—11 747
665 3— 3— 705 |11 3— 3[745{ —29—_—|785| 3— 329
666 | — 359 3 1706 |23 737— | 746} 317 3 7|78 | 7 3— 3
667| 7—11— 707 | 311 3— | 747131 3— 3|787 |17 ——__
668 | 341 3— (708173 319 3|748| — 7——|788| 3— 3 7
669 | — 337 3|709 7414731749 359 3—|789 |13 353 3
670 — —19— | 710} 3_— 3_—_|750|13 3— 3| 790| — 7—1i
671 3 7 3— | 711} 13 311 3(751| 711—73 | 791 341 3—
672 11 3 7 31712} —17—— 752} 3— 3—[792/8% 3— 3
673 | 53 ——23\ 713 3 7 31175317 3— 3 |793| 7——17
674| 311 317| 714|137 3 7 3|754| —19——|794| 313 3 —
675| 43 329 3| 715 —2317— | 755} 3 7 3— | 795| — 373 3
676 | — —67 7| 716| 313 367|756 — 3 7 3| 796| 19—3113
677 | 313 3—|717{71 3— 3| 757]67——11|797| 3 7 379
678 — 311 3/7184311— 7| 758 3— 3— | 79823 3 73
679 —— 7137191 3— 32317591 — 371 31799|61—1119
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1379 1379 1379 1379
800 | 353 3— 184031 3 7 3|880|13——23 (920 | 3— 3—
801 | — 3— 31841 | 134719—| 881 | 3 7 3— |921 |61 313 3
802 (137123 7 |842| 3— 3— (882 |— 3 7 3[922|—23—11
803 | 329 3— | 843 | — 311 3|883 | —11—— (923 | 3 7 3—
804 |11 313 3844 |23 —— 7|884| 337 3— {924 |— 3 7 3
805 |83 — 7— {845 | 379 311|885 |53 317 3 925 |1119—47
806 | 311 3— {846 | — 3— 3| 886 |——— 71926| 359 313
807 | 7 341 3 847 {4337 761|887 | 319 313 {92773 3— 3
808 | —59—— 1848 | 317 313|888 |83 3— 3 (928 | ——37 7
809 | 3— 3 7849} 7 329 3|889 (17— 711 |929| 3— 317
810 | — 311 3 {850 | —114767| 890 | 329 359 (930 |71 341 3
811 | — 7—23 /81| 3— 3 7891 | 7 337 31931 |—67 7—
812 | 3— 311 |82 |— 3— 3892 |11—79— [932] 3— 319
813 147 379 3 (853|119 7— —| 893 | 3— 3 7{933| 73— 3
814 | 717—29 (854 | 3— 383|894 | — 323 3 {934 | —— 13—
815 | 331 341 (85517 343 3|895|— 71317 {935 | 347 3 7
816 | — 3— 3|8% | 7—1311| 89| 3— 3— (936 |11 317 3
817 | —1113— | 857 | 3— 323|897 | — 347 3 1937 | — 7—83
818 | 3 7 319858 | — 331 3|898| 7131189 {938 | 311 341
819 | — 3 7 3{89{1113——|899| 317 3— {939 | — 3— 3
820 {591329— {860 | 3 7 3—|900 | — 3— 3 (940 | 7—2397
821 | 343 3—|81(79 3 7 3{901 | ——7129 {941 | 3— 3—
822 | — 319 3862 {37———|902| 3 7 3— {942 |— 311 3.
823 | ——— 7863 | 38 353903 |11 3 7 3 (943 ————
824 | 3— 373 84| — 3— 3904 | ——83— (944 | 3 7 311
825 137 323 3{865({411711 7|905| 311 3— {945/13 3 7 3
826 11— 7— 86| 3— 3—|906 |13 3— 3 (946 | ———17
827 | 3— 317 {867 |13 3— 3| 907 |474329 7 |947 | 3— 3—
828 | 7 3— 3868| —19 7—| 908 | 331 36194819 353 3
829 | ———43 1869 3— 3— 909 | — 311 3 (949 | —11— 7
830 | 319 3 7 (870 7 3— 3(910|19— 7__ 950 | 313 337
831 | — 3— 3 |871|31—23—| 911 | 331 311 {951 |{— 331 3
832 153 711— {872 311 3 7|912| 7 3— 3(952|—89 713
833 | 313 331 |83} — 3— 3(913|23——13|953| 3— 3—
834 119 317 3 |874! — 7—13| 914 | 341 3 7/954| 7 3— 3
835 | 7—6113 |875| 3— 319|915 — 3— 3/955|—411911
836 | 3— 3— |876| — 311 3|916|— 78953 (956| 373 3 7
837 {11 3— 3 |877| 73167—|917| 3— 367 |957|17 361 3
838 1178 —— |878| 3— 311|918 | — 3— 3 [958 |11 7—43
839 | 3 7 337 |879(59 319 3|919| 72917— |959| 353 329
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1379 1379 1379 1379
960 | — 313 3 (970 (893118 7980 3— 317|990 — 3— 3
91| 7—59— {971 311 3—| 981 | — 3— 3991 |112347 7
962 | 3— 3— |972|— 371 3|982| 71131—{992| 3— 3—
963 | — 323 3 |973 |37— 7—| 983} 3— 3—|993|— 319 3
964 | 31— 11— {974 | 3— 3—|984 |13 343 3994 | —61 7—
965 3 7 313 {975 7 311 3| 985 —59——1995| 337 323
96| — 3 7 31976 |4313——| 986| 3 7 371}9% | 7 3— 3
967 | 1917 —— |977 | 329 3 7987 | — 3 7 31997 |13—1117
968 | 323 3— (978 — 3— 3| 988 }|41——11|998} 367 3 7
969 | 11 3— 3 |979| — 797411989 | 313 319(999|97 313 3
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necessary since the job is done so well by

C. D. Olds, Continued Fractions (New York: Random House, 1963).
Noteworthy ameng popular works is

A. H. Beiler, Recreations in the Theory of Numbers (New York: Dover, 1964).

Beiler is crazy about numbers and he reports on various results and calcula-
tions with great enthusiasm.

This list could be extended to almost any given length, one lifetime is not
time enough to absorb all of number theory. All that can be done is to make a
start on it; you have done that, and can do more.
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Answers to Selected Exercises

Section 1
1. All of them. 6. d.
4. 2,5, 2. 7. 3,3;3,0.
5.1, n. 9. 7, 34.
Section 2
1. One, one. 4. 25, 45, 65, 81, and 85.
3. 72=12%-3%,480 = 2°-3-5. 5.2-3-52.53.
Section 3
1. The left-hand side is even; the right-hand side is odd.
2. All solutions are x = 5¢,y = 2 —t, t an integer.
3. (0).
4, x =10 + 3¢, y = —t, ¢ an integer.
S.x=6,y=landx =3,y =2.
Section 4
1. True, true, false, true.
2. Thenkm=a —b, som|(a—b) and a = b (mod m).
3.1,7,9,4, and 8.
4. n=1 (mod 2). n =1+ 2k for some k. n leaves a remainder of 1 when

divided by 2.
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10. For example, 5 -4 = 5 - 6 (mod 10), but 4 # 6 (mod 10).
11. (a) x = 2 (mod 7), (b) x = 4 (mod 7).
12. x= 2 (mod 3).

Section 5

1. For example, 4x = 3, 5x = 4, 6x= 6 (mod 12) have, respectively, 0, 1, and
6 solutions.

2. (b), (c), and (d) have no solutions.
3. This is included in Theorem 1.
4. @2, bB)x=—-1+10t,y =2—09t.
5.3,1,5,0,1.
6. x=2,5,8, 11, or 14.
7. 2,7, 12; 2; none; 2.
Section 6
2. 10, 1. 3. (2,6),(3,4),(5.,9,7, 8.
Section 7
1. n 11 12 13 14 15 16
d(n) 2 6 2 4 4 5.
2. d(p*)=4.d(p")=n + 1.
3. d(p*’q) =8.d(p"q) = 2(n + 1).
4. 20.
5. n ;91011 12 13 14
o(n) (13 18 12 28 14 24
6. o(p*)=1+p+p*+p*a(pg)=1+p+q +pq.
8 a(pM)=1+p +p*+ - --+p"=(p"' - Di(p —1).

9. 0(240) = 744.

10. n |13 14 15 16 17 18 19 20 21 22 23 24
f(y 1 1 132 1 6 1 4 1 1 1 I2
Section 9

5.1,3.1,3,5,7. 1,3, 5,7,9, 11, 13, 15. $(2*) = 2", the number of odd
positive integers less than 2".

7. $(m).

8. 24, 36, 36.

9. (a) 12, 13, 14, 15, 16. (b) 2. (c) p*.

10. C, = {1,3,5,9, 11, 13}, C. = {2, 4, 6, 8, 10, 12}, C, = {7}, Cys = {14}.
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Section 10

1. 2, 2, and 2.

2. 1,2, 3, o0r6.2and 5 have order six, 4 and 7 have order three, 8 has order
two, and 1 has order one.

3. 191 (39, 77, 115, and 153 are composite).
5. 3 and 7 are primitive roots of 10.

Section 11

1. x* +4x+ 3= 0 (mod 5). 7.1, 1,1, 1.

2. (x+ 2)*=1 (mod 5). 8. 1,1,1.

3. 2 and 4. 9. If p f a, then (a*/p) = 1.
4.2andp - 2. 13. 1, 1.

5.1, 2,and 4. 14. 5, 13, 17.

6. 15 and 16. 15. -1, —1.

Section 12

2. No solution.

Section 13

1.31=22 4+ 22+ 224+ 2 +2°, 33 =25+ 20,
2.6,7.

3. n' <2". Hencer > e, for alli.

4. 9,7, 64.

5. 10,, 10100,, 11001000,.

Section 14

1. 11, 19, 110, 6.
3. 28, 40, 6x6.

4. 8.

5. 371, 275.

6. .186x35

Section 15

1. 73/4950. 4. 7,6, 5.
2. .17073. 5. .02439.
3.4,2,2. 6. 5.
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Section 16

1. If p divides any two of x, y, and z, then it divides the third.
2. Because 2 would divide (a, b).

Section 17

1. ¢*= 2 (mod 4) is impossible.

6. Because n = 2v2 Because b* = m* —~ n*.

7. If n =0, thena® = 2mm =0, an'd a, b, ¢ would be a trivial solution.

Section 18

2.325=18+ I*

Section 19
L3-17=7+1P+12+02=5+4+3+ 12

Section 20

1. The smallest solutions are 32 - 2-22=1and 22 -3 2= 1.

2. If x —my =x + my = 1, then 2x = 2. The other case is similar.
3. 99, 35.

4. (r + SN — SN2y = (r2 = Ns?)* = 1% = 1,

5. Leta=c=x,andb=d =y, in Lemma 1.

6. 7, 4 and 26, 15.

Section 21

1. 1,9, 8, 4. 3. 10, 5.

2. 20, 70. 4. 1979.

Appendix A

1. f(n) = (n — 1)2. 4. All positive even integers.
2. f(n)=n*+1. 5. “1=1-2/2." Yes.

3. f(n)=n*—6n+17.



Answers to Selected Odd-Numbered
Problems

Section 1

1. 1 and 592.
3. One solution is x = —40, y = 79.
11. (b) Yes.

Section 2

1. 2-617,28-33-5,3-7-11-13-37. 11. (b) No.
7. 60466176. 13. False.
9. No. 15. No.

Section 3

l.x=14+t,y=1—-t;x=3+4t,y=1+3t;x=—-1+16t,y=2—15¢;1t an
integer.

3.x=1y=1;x=3+4t,y=1+31,t=0,1,. . .;x=1,y=6andx =3,
y=1.

5 w,y,2)=1(22,8,1), (23, 6, 2), (24, 4, 3), or (25, 2, 4).

7. Nine apples at 9¢ each and three oranges at 6¢ each.

9. If the first merchant had d, the second had 3d, the third 54, and the purse
15d.
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Section 4

1. 0,2, 78. 11. 6.

5.1,2,5,10,71, 142, 355, or 13. 0,1, 5,0r6
710. 17. A is.

7. 3.

Section 5

1. 9;6; 2, 8, 14; 1752.

3. x = 1 (mod 6), x = 348 (mod 385), x = 103 (mod 385).
5.0,1,2,4,5 10, or 20 solutions.
7
9
1

. 1292.
.x=3y=0;x=5y=5.
11. 17, 157, or other larger and more unlikely numbers.
13. 213.
15. 30233088000000.
19. (mi, m;)|(a; — a;) for alli andj, i #J.

Section 6
1. 1,4, 1. 7. 31
3. 3. 19. All n such that n# 0 or 1 (mod p).
5. 1.
Section 7
1. 8, 96, 24, 1344. 9. There are four: 5040, 7980, 8400,
3. 12, 14736; 4, 120144. and 9360.
7. 24, 48. 11. Even k.
17. 2d(N).
Section 8

3. 12, 18, and 20 are abundant, 6 is perfect, and the rest are deficient.

Section 9

1. 12, 96, 960.
3. 6528, 80088.
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5. a 1234 56789 10 11 12 13 14
a®(mod15) {1 1 6 1 10 6 1 1 6 10 1 6 1 1

15. 5, 8§, and 12.

Section 10
1. 2,6, 7, and 11 have order 12; 4 and 10 have order 6; 3 and 9 have order 3; 12
has order 2; 1 has order 1.
3. They are 3, 10, 13, 14, and 15.
5.4,2,4,4,2,4,and 2. No.
7. 6 and 26.
15. p - 4.

Section 11

1. All of them.

3. x=22or 31 (mod 53),x= 13 or 18 (mod 31),x= 2 or 5 (mod 7),x= 5 or
992 (mod 997).

5. -1,-1, -1, 1.

7. x= 3 or 6 (mod 7), x= 50 or 100 (mod 101).
9. 1, 1.

17. Yes: 23, 76, 83, and 136 are all solutions.
19. (/p) = 1.

Section 12

1. Blp)=1ifp= lor 11 (mod12) and ~1if p= 5 or 7 (mod 12).
7. (b) Then a and p — a are both residues or nonresidues.

9. —1.
Section 13
1. 10111010100, 20010215, 4226., 2037,, 1137,,.
3. 421, 1107, 4159, 5377.
S. 102, 153, 7.
7. 2 3 4 5 6

11 15 22 26 33
13 21 26 34 42
15 24 33 42 51

A LhWN
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9. 73, 156, 214, 48848.

11. 19/49, 1/2, 13/16.

13. Any b= 2, 3, or 4 (mod 5).

15. Six gifts, one each of $32, $128, $512, $1024, $32768, and $65536.

17. (a) COl, DODO, CODA, BODE.
(b) 3243, 45232, 57007, 41438.
(c) Not that I know of.

19. (a) 296, 1968.
(b) (113110),.

Section 14

1. 8x67, 15¢43126.

3. .572497249 . . ., 3/13.

5. $4¢.€6.

€. The digits in this answers are in the base x. One do-metric mileis .98 . . .
ordinary miles, one do-metric pint is .93 . . . ordinary pints, and one do-
metric pound is .98 . . . ordinary pounds.

Section 15

1. 2, 1, 4. 9. 2,4, 3,6, 10.

3.2,3. 11. 6, 1, 16.

7. 1/16, 1/18, and 1/24. 13. (a) 01234579 (b) 0123457

(c) .012346.
Section 16

1. They have hypotenuses 10, 15, 20, 25, 26, 30, 34, 35, 39, 40, and 45.
3. (100, 2499, 2501) and (100, 621, 625).

9. Yes.
13. Only (40, 9, 41).

Section 17

3. No. 7. No.

5. No. 9. All even k.
Section 18

1. None is a sum of two squares.
3. The larger square is 179, 178, 173, 166, 163, 157, 142, or 131.
7. Yes.
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Section 19

L3 =5+2+12+1337=6+12=4+4+22+1,4=6+2"+1>=
R L =SR2+ A3 =+ L+ 2+ 12=5+F+32,47=6+ 3% +
P+ 1P=524+324+3+2,53="7+2"=6+4+ 1

3. 148 + 108 + 122 + 42,

5. 00+ =8+ 6= 42+4= -2 (mod 17).

Section 20

1. 3487, 5+2-6"2,7+2-12"219 + 6102,

3. (3, 1) and (17, 6), (5, 2) and (49, 20), (8, 1) and (127, 16).

5. The three smallest positive solutions are (1, 1), (3, 4), and (11, 15).
7. (c) There are infinitely many solutions.

9

. (b) Triangles with sides (3, 4, 5), (13, 14, 15), and (51, 52, 53) are the
smallest.

13. x;/y, approaches n'/2.
15. The next solution is 1087 + 109% + 1102 = 1332 + 1342,

Section 21

1. (a) 1979. (b) None.

Section 23: Additional Problems

Section 1

1. All solutions are x = 1 + 19¢,y = 1 — 23¢, r an integer.
7. 7,n+20)=1, 2, 4, 5, 10, or 20.

9. Yes.

Section 2

1. In its prime—pbwer decomposition each exponent is a multiple of k.
3. (a) 60, 2p%q.

Section 3

1. Four ways. There may be 14, 15,16, or 17 quarters.
Section 4

3. (@ 0,1,4,0or7. (b) No.

7. Anyn = 15 (mod 30) satisfies the three congruences.

Section 5
1. x= 534 (mod 2401). 3. k=1or2.
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Section 7
3. (c) 18, 20, and 24 are examples.
5. (b) No.

Section 8
7. Alla = 3.

Section 9

3. All n which are a power of 2 times an integer relatively prime to 3.

7. () 1,1,2,1,2,2,2. (b) k—1. (c) k. (d)j+k—-1.
13. (a) 0, —13,0, —15,0. (b) —p. (c) 0. (d) —p*.
15. All such 2k, k < 50, are 14, 26, 34, 38, 50, 62, 68, 74, 76, 86, 90, 94, and

98.

Section 10

1. None.

3. 17.

5. 19832 = 1 (mod 1024) and 1983 is not a multiple of 512.

9. k 1 2 3 4 5 6 7 8 9 10
ind,k (mod 19) 0 1 13 2 16 14 6 3 8 17
k 11 12 13 14 15 16 17 18

ind,k (mod19) | 12 15 5 7 11 4 10 9

Section 11
1. No solutions, x = 0 or 4 (mod S), x = 2 (mod 5).
3.1,2,4,7,8,09, 10, 14, 16, 18, 19, 20, 25, 28.

S. 3, 11, and 17.

7. Yes: 21 or 76. Yes: 16 or 37.

9. No.

Section 12
1. No. There are no longer sequences.
3. (¢) 2, 3, and 8.

Section 13

1. (@) (a, b)=(2, 16) or (1, 33). (b) (a, b) = (6, 17).
Section 15

1. ¢(31415) # 31414.

3. In any base b such that 2, 3, and 5 divide b.

S. A computer program may be necessary to find the next example, even
though it comes before 1/100: 1/77 and 1/78 both have period 6.
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Section 17
7. Yes.

9. x =(ac)™,y = (bc)™",z=c*, wherec =a™ +b™ andrn*+ 1 =(n— 1)s.

Section 18
9. None.

Section 19
1. 2387 + 1542 + 66 + 0%, among others.

Section 20
1. Approximately .09, .002, .00007, and .000002.
5. 3363/2378.

Miscellaneous
5. Eight 13’s, two 9’s, and seventy-eight 3’s.
7. Two scotch, one rum, and four vodka.
17. 32076.

19. S.

23. 533=13-41, 1073 =29 - 37.

27. No.

3. (@) a=7,p=17.

41. (c,d) =(4,3) or (11, 9).

49. 1996, 2024, 2052, and 2080.

51. No.

53. 2d(N%» = 1.

55. (@) p—2. (b) p*-2p.

65. x==-1-9m +8n,y=1+9m — 7n,z= —m is one way of writing the
solutions.

73. Yes. i

81. For example, 22+ 52 + - - - + 232 + 26* = 482,

83.1,2,3,5,7,and 11.

85. 9 = (12/5)* + (9/5)* = (36/13)% + (15/13)* = Q4/17)* + (45/17)* = . . ..
97. (b) Yes: 1806. (c) No others.

Appendix A
13. No.
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’ ‘ Problems

The outlines of solutions that follow may not be the easiest or the quickest, but
they will almost always work. The hints may not convey anything, but they
are almost never misleading.

Section 2
7. 60466176 = 6° = (6%)* = (6%)5.

11. (b) 78 = (25ab)/32 = 82 no matter what the digits a and b are, and none of
78, 79, 80, 81, and 82 is a power, except 81.

13. A counterexample is: 3|60, 5 |60, and both 3 and 5 are greater than
60V+ =278 . . .. But 60/3-5=4is not prime. The statement would be
true if p and g were the two smallest prime factors of n.

15. 21" — 1 = 2047 = 23 - 89 is composite and 11 is not.

Section 5
1. 40x=777= —1000 (mod 1777), so x= —25= 1752 (mod 1777).
ls- 2|5 . 3]0 - Sﬁ.

19. The condition (m;, mJ-)I(a,« —a;) for all i andj, i #J, is both necessary-and
sufficient for the system to have a-solution.

Section 6
11 1= (p — Di= (p ~ 1)(p — 2)(p — 3)!= (~1)}(=2)p — 3)!= 2(p — 3)!
(mod p).

15.0) I"+22+ - -+ (p-)=1+2+ - +(p-D=pp-112=0
(mod p), since (p — 1)/2 is an integer.

238
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17. (a) a**? — g+ —a?"! + a* = (a® —a)a® - a).

(b) a*® —a?= a? —a (mod p) and a?? —a?= a®” —a (mod q), so both p
and g divide a?? —a® —a® +a.

19. If n=0(modp), then 1 + n+ n? + - - - + n?~2=1 (mod p). If n= 1 (mod
D), the sum is congruent to p — 1 (mod p). If n # 0 or 1 (mod p), the sum is
(n®7' = 1)/(n — 1), and p divides the numerator but not the denominator of
the fraction. Thus p divides the sum.

Section 7
15. If d,, d;,'. . ., dy are the divisors of n, then 1/d, + 1/d, + - - - + 1/d, =
a(n)/n. To prove this, divide both sides ofd,, + d,_, + - - - +d; = o(n) byn.

17. If x +y=a and x —y = b, then ab = N, and a can have 2d(N) different
values: the positive divisors of N and their negatives. Since N is odd, so
are a and b, and hence each pair (a, b) gives a distinct solution {(x, y).

19. ok(p?) =1 +p*+p*+--- +p*and or(p,“pe® ~* p;) = Ok (P1*)0k (P2"™)
- ok (pr)-

Section 9

9. The sum of the positive integers less than n and relatively prime to it is
n ¢(n)/2.
15. n is of the form 2¢ with a < 3, 29p with a < 2, or 2°pqg witha < 1, where
p and q are odd. Any other form would have ¢(n) divisible by an odd prime
or by 8.

i7. Putm = 27M and n = 2°N, where M aind N are odd and one of r and s is 1.
Then (M,N)=1, so :

plmn) = 27 p(M)G(N)
while
d(m)p(n) = 27'pM ) 227 '$(N).
19. n is divisible by 6, so n = 2°32N with (2, N) =(3, N) = 1. Thus
d(n) = 29327 1p(N) =< 293%~'N < p/3.

Section 10
11. From Problem 10, g = A* (mod p) with k odd, so
(gh)(p—l)l'z = (h(k+l)12)<p—1) = ] (mod P),
and gh does not have order p — 1.
13. Since a# 1 (mod p), a> + a + 1= 0 (mod p), whence
@+ 1)¥=a*+3a*>+3a+1=3@+a+1)-1
—1 (mod p).
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Thus the order of a + 1 is a divisor of 6. It is easy to verify thatitis not 1 or
2.

15. We know that ga®*= —1, soa®= —qg and a*= 1 (mod p). Thus
a'*+4a*+6a*+4a+1=1-4a—-6+4a+1
—4 (mod p).

17. From Problem 14, the primes other than 3 that can divide 2'® + 1 are of the
form 38k + 1. Since ((2'® + 1)/3)'"? < 419, the only primes to test are 191
and 229.

19. Let x =g*. Then

(a+ 1)

gx=x + 1 (mod p) and gix= x+ 2 (mod p),
or
(g —1Dx=1(modp) and (g* — l)x = 2 (mod p).
The latte; congruence implies
(g+D(g-Dx=(g+1)-1=2(modp),

which is impossible.

Section 11

15. 7|(n=’+ 1) implies n?*= —1 (mod 7), but this is impossible because
(-U7y=-1.

Section 12

1. If p > 3, then those integers k such that the least residue (mod p) of 3k is
greater than (p — 1)/2 are just those k& such that (p — 1)/6<k = (p — 1)/3.
Consider cases: p = 12n+ 1, 5, 7, or 11.

3. Show that if p = 27 — 1, where g is an odd prime, thenp = 2 - 4912 — |
= —1 (mod 4) so (3/p) = —(p/3).

5. (a) Note that g = 1 (mod 4) always.

(b) Consider two cases: p = 1 and p = 3 (mod 4).

9. (@) (=3/p) = (—1jp)(3/p) and apply Problem 1.

(b) Ifx2 + xr + r*=.0 (mod p), then (x + s)*= —3s? (mod p), where s is the
unique solution of 2s = r (mod p).

Section 13

15. Write 100000 in the base 2 (11000011010100000), and it is possible to get
100000 as a sum of powers of two.

19. (c) Suppose that an integer has two representations. Then
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0=, ~e;) + (d; —e,)-2! +(ds—e3)-3'+. ..

Consider the equation (mod 2!) to see that d, = e,, then (mod 3!) to see that
d, = e,, and so on.

Section 14

€. The digits in the following answer are in base x. One do-metric mile is
1728/1760 ordinary miles, one do-metric pintis 1616/1728 ordinary pints, and
one do-metric pound is 27(62.5)/1728 ordinary pounds, using 62.5 as the
number of pounds of water in a cubic foot and 231 cubic inches per gallon.

Section 15

13. (d) Inbase b, 1/(b—-1)*=.012. . . (b —4)(b - 3)b—1).
15. Yes. No.

Section 16

15. If (a— 1) +a*=(a + 1)*, thena(a —4)=0.

17. (a) Qn+ 1+ 2nn + NP =QRan+ 1)+ 1), n=0,1,. . ..
(b) Ifa>+ b*=(b + 1)*, then a2 = 2b + 1. Thus a is odd, say a = 2n + 1.
Then b = 2n(n + 1).

Section 17

3. Ifx* + y* =2z%, then (*)* + (¥’ = (2%, and that is impossible.

Section 20

7. (¢) The equation becomes x + ay = 1 or —1, and either one has infinitely
many solutions.
9. (a) The area of a triangle with sides a, b, and ¢ is
(s(s = a)s — b)(s — o),

where s = (a + b + ¢)/2, so this triangle has area (3a*(a* — 1))'2.
(b) If3(a> — 1) = b?, then 3b, b = 3¢, and a® ~ 3¢* = 1, with solutions (Z, 1),
(7,4), (26,15, . . ..

Section 21

1. (b) [n/2]+ [n/2%]+ -+ - <n/2+n/22+ - - - =n.
3. p is not a factor in the denominator and is a factor in the numerator, once.

5. n =w(p,) = ap,/In p, = ap,/In n, because D, = n.
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Section 23: Additional Problems

Section 2
5. Suppose that n is composite. Then it has a prime divisor among p,, p,,
., P Call it p. Then p|(a — b) and p|(a + b), so p|2a and p|2b,
which is impossible because (a, b) = 1.
Section 4
3. (b) The number is congruent to 2 (mod 9).

Section 5
3. For those k such that (k, k(k + 1)/2) = 1, and this is not true if k = 3.

Section 6
1. (@)
(ab)(ab)' = 1= 1-1= (aa’)(bb')= (ab)a'b' (mod p);
cancel ab.
3. This can be found from the theorem of Problem 14, Section 6.
7. Qp — D!'= p (mod p?).
9. 4= —p(p + 1)p (mod p +2), so
4p - D+ D= —p(p+Dp(p - !+ 1)
—p((p+ Dp(p — D! +(p + )p)
—p((p + 1)! +2) (mod p + 2).

Thus4((p — I+ 1) +p= —p((p + 1)! + 1) (mod p + 2), and this is zero
ifand only if (p + 1)! + 1= 0(modp + 2). That is so ifand only ifp + 2 is

prime.
Section 8
5. Aninteger between a pair of twin primes greater than 5, 7 is a multiple of
6, and 12, 18, 24, 30, . . . are all abundant.
13. The divisors of 1 + p are included among 1,2, . . . ,p —1,p + 1, and

the sum of these is (p*> +p + 2)/2 <p*+p + 1.

Section 9
5. This is essentially the same as Problem 19 of Section 9.

9. Letn = 2*3'N with (2, N) = (3, N) = 1 and consider cases. If both k andj
are positive,

2k3i7IN = n/3 = ¢p(n) = 2¥3-1¢(N),
whence N = 1. If k is zero and is not,
n/3 = 37IN = 2 3-1p(N),

which is impossible since 2/N. If j = 0, then n/3 is not an integer.
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13. {—n ifn is odd

0ifn iseven.

2 (=) =

din

Section 10

7. If m = n, the result follows by multiplying both sides of a” = a""a”
(mod p) by a=". If m < n, start with a" = a"~"a"™ (mod p).

11. Letind, « =+. Then g"= a (mod p), so «” = g™ (mod p). But this says
that ind, a" = nr (mod p — 1), which was what was to be shown.

15. The first part is Problem 20(a) of Section 10 again. For the second part,
see Roberts (14, p. 294].
Section 11
9. If p= 7 (mod 8), theng = (p — 1)/2= 3 (mod 4), so
(g/p) = —(p/lg) = —(llg) = — 1.
Section 12

1. One of p, 4p + 1, and 16p + S, is divisible by 3 for all p.
3. (a) The proposed equation is impossible (mod 3).
(b)
m*=n*+ @M +1P+ - - +(n+k?
=+ D +ktk+ Dn+(12+22+ - + k%)
=124+ 224 --- +k* (mod k +1).

5. "= n*-1= 1 (mod p), and
—1=(nfp)= n»~"2=n>" (mod p),
so n has order 2™ (mod p).

Section 13
1. (¢) a(l +b-+ b2 =b(1 +¢) implies b|a. But 0 <a <b.
5.1==141-2=~-1+(=1)-24+1-4=. . ..

Section 14

5. Itis like the test in Additional Problem 10, Section 4.

Section 16

1. Ifn+ (@ +1)=m?, then n? + m?= (n + 1)

3. Ifn=t(t— 1)2and m =t(t + 1)/2, then m? — n? = 3.

5. If mn(m?® — n?) =kQ2mn + (1m® — n?) + (n? + rn?)), then 2k =n(m —n).
If 2k +ab,thenm =a +b and n =a.

Section 17

5. Ifp | xyz, then x»~' = y»~1 = z7~' = | (mod p).

7. Yes, because (n%,n +1)=1.
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Section 18

3. Suppose that 4¢(8k + 7) =x2 +y2 + z®. Apply Problem 1 e times to get
8k + 7 = x,2 + y,2 + z;%. Then apply Problem 2.

5. If n= 2 (mod 4), then n = x* — y? is impossible.
7. Ifn=x(x+1D2+y(y +1)/2,thendn+1=(x +y + 1> + (x — y)*.
9. None—all are congruent to 3 (mod 4).

Section 19

1. 5725841 = 112 - 47321, so it is necessary only to write 47321 as a sum of
four squares.

5. Ifky, k,, . . . ,k,are odd, then k2 + k2 + - - - + k2= r (mod 8).

Section 20
1. The approximations are 3/2, 17/12, 99/70, and 577/408.
3. This follows from Lemma 2.

Miscellaneous Problems

9. The first numbers on the left-hand sides are every other triangular
number. The result may be written

@r2+n2+ - +Q2n2+2n)2=Q2n2+2n + 1)2+ --- +(2n + 3n)*

13. fln) = (3 + (—-1)**Y4 is one. f(n) = (n + 1 — 2 [n/2])/2 is another.

19. Now Then
Ann’s age a 3m/2
Mary's age m 5a

3m/l2 —a =5a —m,so5m = 12a.

27. 2+ (x+ 1)2=((x+ 1)+ 1)2 - (x(x + D).
29. No:x2+ (1 — x) =x + (1 — x)* for all x.

31. (b) 2a=a3%= 3, 3a = a*= 4 (mod p) imply @ = 1 (mod p), which im-
pliesp = 1.

33. (a) If m is composite, then one of p =2, 3, 5, 7 divides m. But then
p | (2101 + m) too.

35. Note that there is no loss of generality in assuming that (a, b) = 1.
Complete the square on the right-hand side to get
(x + (@ +b)P =2a? + b* +ab),

and that is impossible (mod 4).

39. All are congruent to 1 (mod 3). If not, two of the integers would be
divisible by 3.

41. c*+S=cd+3d,sod =c — 3 - 14/(c + 3), whence ¢ =4 or 11.



43.
47.
49.

51.

53.

55.

59.
61.

63.
69.
71.
73.

75.

717.

79.

83.
85.
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Any divisor is 27g* wherer = p —1,s =0or 1, and g =27 - 1.
Interchange 49 and 94.

There are 3 - 365 + 366 = 1461 days between one leap year February 1
and the next. 1461 = 5 (mod 7). Remember that 2000 will be a leap year.

(a) If n is composite, 10" — 1 is composite.
(b) 111 =3-37.

Putx =N +a and y =N + b. Then ab = N2. There are d(N?) positive
values of a that satisfy this and d (N?) negative values, one of which is
-N.

(c) Let¥(n)be the number of elementsinthe sequence 1-2,2-3,. . .,
n(n + 1) which are relatively prime to n. If n =p*, p an odd prime,
then ¥(n) = p*~'(p ~ 2). ¥ is multiplicative; thus ¥(n) can be found
for any positive integer n.

For example, 19 =16 +2 + 1 anci 19E appears in lists 16, 2, and 1.
The harmonic mean of the divisors of n is
1 l)“
(d(n) MER d) ’

which is nd(n)/a(n). If n =2#7'(2» - 1), a(n) =2n, d(n) =2p, and the
harmonic mean is p.

2r* + 3= 3 or 5 (mod 8), which is impossible.
9" = 1 (mod 100).
312" + 1).
Yes: 222221 — 1) = 134+ 33 + - - - + (2% — 1)?is true for all &, as may
be shown using the fact that
B+22+ - +nd¥=(nn+ DR
If n = 2#"'q, where g = 2* — 1 is prime, then the divisors of n are
1,2,...,2",q,2q,...,2'g,

and their product is n”.

For each 5 that appears as a factor of n!, there are at least two even
factors.

(a)n 2 3 4 5 6 78 9 10 11 12 13 14 15
f(n)234‘5376651141375
n 16 17 18 19 20
fln) 8 17 6 19 5.

Ifp > 12, then p — 9 is even and composite.
If 9 = (a/c)? + (blc)?, then a? + b* = 9¢2. Hence a* + b*= 0 (mod 9), and
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this implies thata = 3r, b = 3s. Thus r* + s* = ¢2, and this has infinitely
many solutions.

91. Forn = 2, x =y is impossible, so we may assume that x >y. Then
(X + l)m >xu +nxn—l >xﬁ +yn >ZM >xn,
sox + 1>z >x, which is impossible.

93. If f(r/s) = 0, thenr |an ands |a°. Hence r and s are odd. But this implies
that 0 = s"f(r/s) is the sum of some even integers and an odd number of
odd integers, which is impossible.

95. Induction, using the identity

23»“ + 1 - (23k + 1)(223&' . 23k + 1)’
is one method that will work.

97. (@) Let m =pips . . . p, With p, <p, < - - - <p;. Then p,|m implies
(p» — Um, so p, — 1 =p,. Thus p, = 2 and p, = 3. Further, p;|m
implies (p; — 1)|m, so (ps — 1)|p,p,, whence p,=7. Similarly,
(p, — 1)|42, so p, = 43. Finally, (p; — 1)|2 -3 - 7 - 43, but there is no
such prime.

(b) m=2-3-7-43 = 1806 has the desired property.
(c) But there are no others.

99. Apply Fermat’s Theorem: there is a progression starting at any term with
ratio 2¢71,

Appendix A

3. B4+33 4+ - - - 4+ 2k~ 1P =k2(2k2 - 1).
S.t,=n@n + 1)/2.
9. n-~hnm+Dn+2)=m+n-12-1.

13. 8¢, +1=Q2n + 1)

15 f5n+5 =f5n + 5f3n—1 + 10f5n—2 + IO.fSR—}! + 5f5n—4 +f5n—3'
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